• Title/Summary/Keyword: container identifier recognition

Search Result 22, Processing Time 0.023 seconds

Recognition of Identifiers from Shipping Container Image by Using Fuzzy Binarization and ART2-based RBF Network

  • Kim, Kwang-baek;Kim, Young-ju
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.88-95
    • /
    • 2003
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. We proposed and evaluated the novel recognition algorithm of container identifiers that overcomes effectively the hardness and recognizes identifiers from container images captured in the various environments. The proposed algorithm, first, extracts the area including only all identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper and by applying contour tracking method to the binarized area, container identifiers which are targets of recognition are extracted. We proposed and applied the ART2-based RBF network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm has more improved performance in the extraction and recognition of container identifiers than the previous algorithms.

  • PDF

Identifier Extraction of Shipping Container Images using Enhanced Binarization and Contour Tracking Algorithm (개선된 이진화와 윤곽선 추적 알고리즘을 이용한 운송 컨테이너의 식별자 추출)

  • Kim Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.462-466
    • /
    • 2005
  • The extraction and recognition of shipping container's identifier is difficult since the scale or the location of identifiers are not fixed-form and input images have some external noises. In this paper, based on these facts, first, edges are detected from input images using canny masking, and regions of container's Identifiers are extracted by applying horizontal and vertical histogram method to canny masked images. We use a fuzzy thresholding method to binaries the extracted container's identifier regions, and contour tracking algorithm to extract individual identifiers. In experimental results, we confirmed that the proposed method is superior In performance.

Character Segmentation from Shipping Container Image using Morphological Operation (형태학적 연산을 이용한 운송 컨테이너 영상의 문자 분할)

  • 김낙빈
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.390-399
    • /
    • 1999
  • Extracting the character region(container identifier) in the image of a shipping container is one of the key factors in a system for identifying a shipping container automatically To improve the performance of the automatic recognition system for identifying a shipping container, thus a method partitioning the character region more correctly and efficiently is needed. In this paper, an efficient method is proposed to extract only the character region in the image of a shipping container. The proposed method removes noises that are not possibly related to the character using morphological operation, then the image is binarized using the threshold value that is determined from the image obtained previous step. Finally individual character area is extracted from the binary image. Also experiments are conducted to verify the efficiency of the proposed method. The results show that the proposed method partitions the character region correctly from container images.

  • PDF

Container Image Recognition using Fuzzy-based Noise Removal Method and ART2-based Self-Organizing Supervised Learning Algorithm (퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Kim, Kwang-Baek;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1380-1386
    • /
    • 2007
  • This paper proposed an automatic recognition system of shipping container identifiers using fuzzy-based noise removal method and ART2-based self-organizing supervised learning algorithm. Generally, identifiers of a shipping container have a feature that the color of characters is blacker white. Considering such a feature, in a container image, all areas excepting areas with black or white colors are regarded as noises, and areas of identifiers and noises are discriminated by using a fuzzy-based noise detection method. Areas of identifiers are extracted by applying the edge detection by Sobel masking operation and the vertical and horizontal block extraction in turn to the noise-removed image. Extracted areas are binarized by using the iteration binarization algorithm, and individual identifiers are extracted by applying 8-directional contour tacking method. This paper proposed an ART2-based self-organizing supervised learning algorithm for the identifier recognition, which improves the performance of learning by applying generalized delta learning and Delta-bar-Delta algorithm. Experiments using real images of shipping containers showed that the proposed identifier extraction method and the ART2-based self-organizing supervised learning algorithm are more improved compared with the methods previously proposed.

Design of Container Image Preprocessing And Identifier Recognition System (컨테이너 영상 전처리 및 식별자 인식 시스템의 설계)

  • 박준표;이주표;황대훈
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.786-791
    • /
    • 2002
  • 오늘날 컨테이너의 과다한 물동량 증가로 인하여 수작업으로 이루어지는 컨테이너를 처리하는데 어려움을 겪고 있다. 따라서 식별자로 컨테이너를 자동 인식하고 그 결과를 항만 물류처리 자동화 시스템에 적용하고자 하는 필요성이 대두되고 있다. 이에 본 논문에서는 항만 물류처리 자동화 시스템을 사용하기 위하여 컨테이너의 인식 처리를 자동화하는데 그 방안으로 컨테이너의 RGB를 이용하여 바탕색과 문자색을 검출하고 바탕색과 문자색의 차를 이용해 가장 큰 차이를 보이는 RGB 값 중 하나로 영상을 이진화 하였다. 컨테이너의 식별자를 인식하기 위해서 신경망 알고리즘의 하나인 Back-propagation을 적용하여 기존의 식별자 인식 방법보다 신속하고 정확한 처리가 가능하도록 구현하였다.

  • PDF

An Implementation and Analysis of the Container Identifier Recognition System using back-propagation algorithm (Back-propagation 알고리즘을 이용한 컨테이너 식별자 인식 시스템의 구현 및 분석)

  • 이만형;황상훈;정신규;황대훈
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.254-259
    • /
    • 1998
  • 오늘날 컨테이너의 과다한 물동량 증가로 인하여 수작업으로 이루어지는 컨테이너 식별자를 처리하는데 어려움을 겪고 있는 가운데, 이를 자동으로 인식하고 그 결과를 항만 물류 처리 자동화 시스템에 적용하고자 하는 필요성이 대두되고 있다. 이에 본 논문에서는 컨테이너의 인식 처리를 자동화하기 위한 방안으로 컨테이너의 식별자 인식에 신경망 알고리즘의 하나인 Back-propagation을 적용하였으며, BP 알고리즘을 적용하기 위해서 적절한 scaling 비율을 구하고, 학습 DB를 구축하여 기존의 식별자 인식보다 신속하고 정확한 처리가 가능하도록 구현하였다.

  • PDF

An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image (효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 김광백
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.486-492
    • /
    • 2003
  • The vigilance threshold of conventional fuzzy ART algorithm decide whether to permit the mismatch between any input pattern and stored pattern. If the vigilance threshold was large, despite of little difference among input and stored patterns, the input pattern may be classified to new category. On the other hand, if the vigilance threshold was small, the similarity between two patterns may be accepted in spite of lots of difference and the input pattern are classified to category of the stored pattern. Therefore, the vigilance threshold for the image recognition must be experientially set for the good result. Moreover, it may occur in the fuzzy ART algorithm that the information of stored patterns is lost in the weight-adjusting process and the rate of pattern recognition is dropped. In this paper, I proposed the enhanced fuzzy ART algorithm that supports the dynamical setting of the vigilance threshold using the generalized intersection operator of fuzzy logic and the weight value being adaptively set in proportional to the current weight change and the previous weight by reflecting the frequency of the selection of winner node. For the performance evaluation of the proposed method, we applied to the recognition of container identifiers from shipping container images. The experiment showed that the proposed method produced fewer clusters than conventional ART2 and fuzzy ART algorithm. and had tile higher recognition rate.

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Enhanced Neural Networks (윤곽선 추적과 개선된 신경망을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 이혜현;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.235-239
    • /
    • 2002
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다 된 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보를 이용하여 수직 블록과 수평 블록을 추출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 이용하여 개별 식별자를 추출한다. 컨테이너의 개별 식별자 인식은 ART1을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 적용한다. 실험 결과에서는 제안된 컨테이너 식별자 추출 린 인식 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 보인다.

  • PDF

The Identifier Recognition from Shipping Container Image by Using The Enhanced Self-Organized Supervised Learning Algorithm (개선된 자가생성 지도학습 알고리즘을 이용한 컨테이너 식별자 연식)

  • 이혜현;김태경;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.149-154
    • /
    • 2002
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 에지 추출 기법을 이용하여 컨테이너의 식별자 영역을 추출하고 추출된 컨테이너 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 결합하여 개별 식별자를 추출한다. 추출된 컨테이너 개별 식별자 인식은 ART1을 수정하여 지도 학습 방법과 결합한 개선된 자가생성 지도학습 알고리즘을 제안하여 적용한다. 실험결과에서는 제안된 컨테이너 식별자 추출 및 인식 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 보인다.

  • PDF

An Enhanced Fuzzy ART Algorithm for The Identifier Recognition from Shipping Container Image (운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 류재욱;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.365-369
    • /
    • 2002
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.