• Title/Summary/Keyword: container handling

Search Result 280, Processing Time 0.023 seconds

Evaluation Models for the Container Handling Times of the Automated Transfer Crane in Container Terminals (컨테이너 터미널에서 자동화된 트랜스퍼 크레인의 컨테이너 취급시간을 위한 평가모형)

  • Kim, Ki-Young
    • IE interfaces
    • /
    • v.19 no.3
    • /
    • pp.214-224
    • /
    • 2006
  • The container handling times of automated transfer cranes(ATCs) significantly affect the productivity of container terminals. In this paper, evaluation models for the container handling times of ATCs are suggested for import container blocks with different transfer point configurations. Firstly, evaluation models for various motion times of stacking and retrieving operations of ATC are suggested for two basic alternatives of import container blocks. In addition, in considering the space allocation, evaluation methods for the container handling times of ATC are suggested. Finally, the container handling times for each case are compared with each other in order to analyze how the block shape and the transfer point locations affect the container handling times of ATC.

New Conceptual Handling Systems in Container Terminals

  • Kim, Kap Hwan;Phan, Mai-Ha Thi;Woo, Youn Ju
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.299-309
    • /
    • 2012
  • This paper introduces some of the developments related to the handling equipment in container terminals and various new conceptual handling systems that have been proposed during the last several decades. The basic ideas behind the previous equipment improvements are analyzed to identify future directions that can be used for devising new handling systems. The handling systems in the container terminals include a quayside handling system, transport system, and yard system. In response to the deployment of mega-sized vessels for container transportation systems, productivity improvement has become one of the most urgent issues in the container terminals. This paper analyzes the previous improvements made for achieving higher productivity in the three subsystems of container handling. Some conceptual handling systems are introduced including the linear motor conveyance system (LMCS), automated storage and retrieval systems (AR/RS), overhead grid rail (GRAIL), SPEEDPORT, SuperDock, the automated container system by ZPMC (ACS-ZPMC), and AUTOCON.

Estimation of the Handing Capacity of Container Terminals Using Simulation Techniques (시뮬레이션 기법을 이용한 컨테이너 터미널 하역 능력 추정)

  • 장성용
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.53-66
    • /
    • 1996
  • Container handling facilities in Korean ports have increased rapidly according to Korean industrialization and the worldwide containerization. Over 98% of total containers handles in Korean ports are handled in Puan ports. This paper presents the estimation method of annual container handling capacity of container terminals by the computer simulation models. Simulation models are developed utilizing SIMAN IV simulation package. Annual handling capacity of real container terminals such as BCTOC and PECT was estimated by the proposed simulation models. Also, Annual handling capaicty of planned or expected terminals in Puan port was estimated. The comparisons between container forecast demand and estimated handling capacity of Pusan port from 1996 through 2001 were made. It showed that Pusan port will have over two million TEU handling capacity shortage during that period and will face enormous port congestion. Lastly, mid term and long-term capacity expansion plansof container terminals in korean ports were discussed.

  • PDF

Load Scheduling Using a Genetic Algorithm in Port Container Terminals (컨테이너 터미날에서의 유전자 해법을 이용한 적하계획법)

  • Kim, Kap-Hwan;Kim, Ki-Young;Ko, Chang-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.645-660
    • /
    • 1997
  • An application of the genetic algorithm(GA) to the loading sequencing problem in port container terminals is presented in this paper. The efficiency of loading operations in port container terminals is highly dependent on the loading sequence of export containers. In order to sequence the loading operation, we hove to determine the route of each container handling equipment (transfer crane or straddle carried in the yard during the loading operation. The route of a container handling equipment is determined in a way of minimizing the total container handling time. An encoding method is developed which keeps intermediate solutions feasible and speeds up the evolution process. We determine the sequence of each individual container which the container handling equipment picks up at each yard-bay as well as the visiting sequence of yard-bays of the equipment during the loading operation. A numerical experiment is carried out to evaluate the performance of the algorithm developed.

  • PDF

Development of The High-Speed Container Handling System with On-Chassis Type (온-섀시 방식의 고속 컨테이너 하역시스템 개발)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.323-332
    • /
    • 2020
  • Container ships are getting bigger due to the increase in global cargo volume. Therefore, it needs to increase the speed for loading and unloading of containers at the quayside. Traditionally, only one container is handled at once at the quayside due to it's heavy weight. In this paper, a method of handling multiple containers at once using chassis is proposed. Proposed system is consists of a container chassis that can hold three layer stacked containers, transport system that can handle the container chassis including rail-based or vehicle-based roll-on roll-off systems, and dedicated crane system. The conceptual design of crane and transport system that can handle three stacked containers is carried out and verified. The proposed system can be adopted for real quayside container handling system with high speed.

Design of Container Crane Controller for High Productivity in Cargo Handling (하역생산성 향상을 위한 컨테이너 크레인의 제어기 설계)

  • 최재준
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.28-35
    • /
    • 2000
  • For the merit of a container in transportation and cargo handling the amount of container freight has been continuously on the increase. On the other hand container crane had got the bottle neck in cargo handling due to low productivity so that freight congestion had been often occurred at ports. in this paper A mathematical model for container crane system is represented a method for designing a fuzzy controller of container crane system for high productivity in cargo handling is presented. The fuzzy controller is compared with other optimal controller at the same condition. in the computer simulation the fuzzy controller obtained an excellent response to reference change better than the optimal controller. For disturbance such as a strong storm and parameter change due to change of cargo weight the result was also stable and robust than the optimal controller.

  • PDF

A Study of Dynamic Forecast on Port Container Handling Capacity (항만 컨테이너 처리능력의 통계적 예측에 관한 연구)

  • Feng, Zhan-Qing;Lee, Su-Ho
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 2002
  • In view of the great disparity between forecasts of Shanghai port container handling capacity and its real results, we choose a dynamic forecast method by the causality model dynamic compensation to predict Shanghai port container handling capacity. And we forecast Shanghai port container handling capacity by using this method. We have made a satisfactory achievement, which provides a more reliable and practical way to forecast container handling capacity.

Container Flow Management in Port Logistics Based on BPM Framework

  • Nisafani, Amna Shifia;Park, Jaehun;Bae, Hyerim;Yahya, Bernardo Nugroho
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • To promote process effectiveness and efficiency, it is necessary that port logistics employ automated equipments for handling containers. There exists a system for automatically managing the container flow, called Control Module. However, it has limitation to assign the execution order to the machine and monitor the container flow in real time process. Business process management (BPM) provides a suitable and effective framework to address this problem including controlling and monitoring the flow of each container. Since the nature of container handling process is different with the common process in BPM that is conducted by human performer, it is necessary to adjust the BPM framework in the domain of port logistic management. This study presents a BPM framework corresponds with both human-based and machine-based activity to enhance the efficiency of port process flow including container flow. This framework is introduced as an integrated approach and mechanism of BPM application into the container handling system for the purpose of port logistics process automation.

Comparing Cycle Times of Advanced Quay Cranes in Container Terminals

  • Phan-Thi, Mai-Ha;Ryu, Kwangyeol;Kim, Kap Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.359-367
    • /
    • 2013
  • The amount of international trade is rapidly increasing as a result of globalization. It is well known that as the size of a vessel becomes larger, the transportation cost per container decreases. That is, the economy-of-scale holds even in maritime container transportation. As a result, the sizes of containerships have been steadily increased for reducing transportation costs. In addition, various handling technologies and handling equipment have been introduced to increase the throughput capacities of container terminals. Quay crane (QC) that carries out load/unload operations plays the most important role among various handling equipment in terminals. Two typical examples of advanced QC concepts proposed so far are double trolley QC and supertainer QC. This paper suggests a method of estimating the expected value and the standard deviation of the container handling cycle time of the advanced QCs that involve several handling components which move at the same time. Numerical results obtained by the proposed estimation procedure are compared with those obtained by simulation studies. In order to demonstrate the advantage of advanced QCs, we compared their expected cycle times with those of a conventional QC.

Models for Determining the Size of Import Container Block in Automated Container Terminals (자동화 컨테이너 터미널에서 수입 컨테이너 장치 블록 크기 결정을 위한 모형)

  • Kim, Ki-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.705-710
    • /
    • 2007
  • The productivity of automated container terminals is significantly affected by not only the speed related performances of automated transfer cranes(ATCs) but also the sizes of container blocks. In this paper, it is discussed how to determine the size of import container blocks considering both the container handling times of an ATC and their storage space. Firstly, evaluation models are suggested for the container handling times of an ATC in a typical import container blocks. Secondly, three mathematical formulations are suggested to determine the size of import container blocks. Numerical experiments for the suggested models to determine the size of import container block are provided.