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Abstract

An application of the genetic clgorithm{GA) to the louding sequencing problem in port
container terminals is presented in this paper. The efficiency of loading operations in port
container ferminals is highly dependent on the locding sequence of export conteiners. In order
to sequence the loading operation, we hove to determine the route of each container handling
equipment (transfer crane or siraddle carrier} in the yard during the leading cperation. The
route of a container handling equipment is determined in a way of minimizing the fotal
container handling time. An encoding method is developed which keeps intermediate solutions
feasible and speeds up the evolufion process. We determine the sequence of eoch individual
container which the container handting equipment picks up of each yard-bay as weli us the
visiting sequence of yord-bays of the equipment during the leading operation. A numerical
experiment is carried out to evaluate the performance of the algorithm developed.

key word : Container terminal, Loading sequence, Genetic algorithm

1. Introduction

The efficiency of loading operations in port container
wrminal is highly dependent on the lvading sequence of
export contziners. In this paper, we apply a genmetic
algorithm 1o determine the route of the handling
equipments(straddle carrier(SC), transfer crane(TC)) in 2
way of minimizing the total container handling time of

the container handling equipments.

Cho developed a methodology for containership load
planningj4). In the paper, he formulated an integer
programming model to assign a specific container to a
specific cell in a bay of the ship. Although his formulation
gives us the insight for the load scheduling problem, it
is impossible to get the optima} solution for real size
problems. Gifford presented a heuristic procedure for a
containership load planning in a transtainer-based con-

tamer port{7). Chung et al. proposed a strategy of
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providing buffer spaces in the apron area in order to
increase the utitization of material handling equipments
ard reduce the total container loading time, which is
evaluated by a simulation techmique[5).

Other similar problems can be utilized to solve the lead
sequencing problem, althongh they are not directly refated
to port container terminals[9,11,13]. A typical example is
the routing problem of a manual picker within a simple
warehonse. This problem involves the minimization of the
travel distance of the picker for a given list of picking
items[8,12]. Other examples are the wehicle routing
problem{2,10] and the traveling sales man problem. But
th2 load sequencing problem in this paper is different
from the previons researches in that the rumber of
centainers to be picked up at each visiting yard-bay has
to be determined in addition to the visiting sequence of
yard-bays for the handling equipment. And the handling
equipment is allowed to revisit a yard-bay at any multiple
times.

In the following section, we first define the routing
problem of container handling equipment during the
centainer loading operation in port container terminals in
more details. In section 3, we suggest a mathematical
formulation of the routing problem. In section 4, we
shortly review the scheme of the general genetic algorithm
and suggest a genetic algorithm for the routing problem
of container handling equipment. In section 5, the results
of the compuiational experiment are shown. In section 6,
a solution for a practical example is illustrated. Finally,
summary and conclusion are provided in section 7.

2. Problem Descriptions

In the following, i is described how load planners
determine the loading segquence of export containers:

Based on the load profile provided by the ship company
and the availabiliy of gantry cranes, planners firstly
determine the unloading and loading sequence of ship-
bays in the containership which we call the “work

schedule”. Major considerations are given here to prevent

a gantry crane from interfering with another. The work
schedule shows the number of containers to be discharged
and loaded in each ship-bay of the comainership. And 1t
also shows the sequence of ship-bays in which ¢ach ganiry
crane performs the handling operation. A work schedule
is iMlustrated in Figure 1. The load planning by the work
schedule is to pick up sequentially “5 containers of group
A", “S containers of group B”, “3 containers of group
C" and so on. The first subtour of the container handling
equipment corresponds to a visiting sequence of yard-bays
for the container handling equipment to pick up S
containers of group A. By connecting subtours we can
get a complete tour for a container bandling equipment,

sequence ; 2l slais!s
{subtour number)

group AlB | C | A |D|C
guantity 3 5 3477 & | 4

Figure 1. An Hlusiration of a work schedule

Once the work schedule has been determined, the load
planner assigns a specific container on the yard o a
specific cell(slot) of the containership and determines the
sequence of loading containers. In the process, the planner
considers the work schedule of each gantry crane, the
load profile, and the yard map which shows the storage
locations of containers in the yard. Yard map keeps
various informations of containers on the yard which
include container number, destination, shipping company,
and weight.

In this paper, we try to minimize the travel distance of
the container handling equipment by optimizing the yard-
bay sequence in which it visits during leading operation
and the number of containers to pick up at each visiting
yard-bay simultaneously.

The loading schedule has to satisfy the following two

constraints: {1) it must satisfy the requirement of the work
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schedule of the corresponding gantry crane and (2} the
totzl number of containers of each group picked up at
each yard-bay must be equal to the initial number of
containers of the corresponding group.

The method of the load scheduling depends on the type
of the container handling equipment. In this paper, we
assume that straddle carriers(SC) are used as the handling
equipment.

In a container terminal using straddle carrier, a yard-
slol is identified by its block number, yard-bay number,
row number, and tier number. Figure 2 shows an example
of vontainer loading nsing straddle carrier ir port container
tenminal, A yard-map shows the distribution of containers
of each container group in the yard as in Figure 3.

To load & container in the yard onto a ship, the straddle
carrier{SC) moves over a yard-bay, picks up a container,
moves it to the end of the yard-bay, and loads it onto a
vard trailer. Then, the yard tractor/trailer(YT) transports
the container to & gantry crane. Finally, the gantry crane
picks up the container and loads it onto the ship. Since
the YTs may not move over yard-bays, the SC has to
move between the location of the target yard-slot and the
end point of the yard-bay whenever the SC transfers a
container to a YT. Thus, the relative locations of two
consecutive confainers within the same yard-bay do not
affect the total travel distance. B, if two comsecutive
containers are located in different yard-bays from each
other, the SC has to travel between yard-bays which is
a main source of inefficiencies in the loading operation.
Since the load sequence of comtainers affects only the
total travel time of the SC between yard-bays, we try to
recuce the travel time of SC.

3. Mathematical Formulation

We first define a “tour” as a visiting sequence of yard-
bays by a SC in order to pick wp all the specified
containers in the corresponding work schedule. By a
“subtour” of a SC, we mean a visiting sequence of yard-

bays during which a SC picks up all the containers for

a cluster of cells in the ship (See Figure 1). For example,
in order to carry out the work schedule in Figure 1, we
have to schedule a tour consisting of six subtours each
of which corresponds te “picking up five A containers”,
“five Bs”, “three Cs", “seven As” and four Cs,
respectively. By connecting subtours, we can get a
complete tour for a SC.
The following notations are used to formulate the camier
routing problem:
n=the number of subtours which constitute a complete
tour of a SC
B=the set of indices of yard-bays, B={1,23...m|
G=the set of indices of container groups, G=11.2,3....{}
¢,~the initial number of containers of group # stacked at
yard-bay j
S(k)=the set of indices of subtours whose comesponding
container group number is k
r=the number of containers to pick up during subtour ¢
d,=the travel distance between yard-bay i and j,

The tour of a SC may be expressed as a route on a

network which may be constructed as follows:

A network may be represented by a set of vertices (V)
and a set of arcs (A). In our formulation, a vertex is
represented as ¥ where ¢t is the subtour number and § is
the yard-bay number(Sce Figure 4). Then, the problem is
te find a path on the network which starts from nede §
and ends at node T and to determine simultaneously the
number of containers to pick up at each node during the
tour. Of course, the total number of containers to pick
up during a subtour should be the same as the number
specified in the work schedule. And note that the total
number of containers of each group picked up at each
yard-bay may not exceed the initial available amount in
the bay.

We introduce some more notations for the following

explanation:



A'V)=the set of arcs, A(V)={{(i) | ije V}, given a set
of vertices V,
t=subtour number, ¢ =0, 1, ..., n, a+1 where =0 and n+1
at sonrce and terminal vertices in the network represen-
tation which implies the initial and the final location of
the SC, respectively,

V. 1, if the SC moves yard-bay { yard-bay  after completing subtour {

= . .. .
0, otherwise {a decision vanable),

and, ¥;; and ¥ denote the first and final movement
of the SC during the tour, respectively,

i_

{ 1, if the SC moves yard-bay i yard-bay j daring subiourt
if

0, gtherwise (a decision variable),
X-the number of containers picked up at yard-bay  during subtour
t {a decision variable).

Then, the problem may be formulated as follows:

. m—L
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The objective function s to minimize the toial travel distance of
the SC. Since the total travel distance within a yard-bay is constant
regardless of the loading sequence of containers, we consider only
the inter-bay movements of the SC in onder to evaluate the toral
trave] distance.

'The constraints (2){(4} represent the flow conservation. & feasible
solution corresponds 10 a path from the source node to the terminat
node or the network, The constraints (2) and (3} represent the pain
of flows a1 sowrce node and the terminal node, vespectively, while
the constraint {4) represents the flow conservation at the other nodes.
The consteaint {5) is to prevent the looping of subtours. We may
have an isolated cycle in the final solution which is not connected
to the path from the source to the terminal nede. The constrains {6)
comes from the definition of variables. These constraints imply that
onty when the SC visits a bay, il can pick up containers at the bay.
The constraint {7) implies that the number of containers picked up
1 a subtour should be equal to that of containers requested by the
work schedule. The constraint (8) means that the total namber of
containers picked up during the whole towr should be equal to the
initial number of comaners at each bay for each specific container
gnyup.

LINDC program was used 0 solve the above mixed integer
programming for an example problem. We developed a code
generation program to convert the input data into the mixed integer
programming code which LINDO can read and process. The
computational time increased rapidly as the problem size grows. For
example, it ook about 9 hours on IBM/PC 486 1o solve an example
prablem, with only 6 yard-bays, 12 container groups and 16 subtours,
It is why we suggest a search procedure based on a genetic algorithm.

In the following section, we adopt a genetic algorithm in order
to determine the number of containers to be picked up by the SC
at a specific yard-bay.

4. A Genetic Algorithm for Routing the Container
Handling Equipment

Genetic algonthm{GA) is a heuristic search technique that imitares

the natural selection and the biological evolutionary process. GA

combines the notion of survival of the fittest, random but yet
structured search, and paralle] evaluation of nodes in the search
space. G4 has been successfully applied to various combinatorial
optimization problems. The traveling salesman problem {TSP) is one
of the typical NP-hard problem which is sobved successfully by GA.
It has a similar structure to the routing problem of container handling
equipment treated in this paper.

A genetic algonithm is characierized by a string representation
{genes) of nodes ia the search space, a fitmess function to evaluate
the search nodes, and 2 stochastic assignment to control the genetic

OpETAOTs,

4.1 Encoding

The fist siep of designing a genetic algorithm is to define an
encoding method which enables us 10 map afl the nodes in the search
space info @ set of symbolic swrings. This is a crucial phase that
affects all the subsequemt steps.

‘The encoded string in this paper consists of symbols each of which
comesponds to 2 specific container. & permutation of the container
numbers 15 4 chromosome which corresponds to a possible sequence.
Every symbol (comainer number) appears only once in the
chromosome. This coding method for the routing problem in this
paper is similar to the one of TSP. The difference is that in this
paper we construct an independent chromesome for each comainer
group {a collection of comtainers of a same size and with a same
destination port). That is, when chromosomes in the initfal population
are generated, each pene is generated based on the container group.
We call this encoding strategy “group based encoding”. Figure 3
Hlustrates a result of the group based encoding. In the encoding
method, all the containers of a contaimer group are assigned only to
the section for the comesponding container group. For example. all
the containers of container group A are assigned only lo section A
and all contziners of container group B are assigned enly 1o section
B.

We summarize how to constuct the chromesome as follows:
® Each chromosome (string} consists of several sections (subchiromo-

somes). Each section in a string comesponds to a sequence list of

containers of a specific container group. In Figure 3, digits fram
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a collection of conlaners of each group

contaner no. 21

819 10

yard- bays sfels|3|a|sfr |11 ]7]7]|7

Figure 5. An illustration of encoding ond decoding for the problem in Figure 1 and Figure 3

1-5 and 14-20 constitutes & section.

®W: define a run as a subsection of 2 chromaseme which consists
of containers of 4 same group in a same vard-bay that are picked
up consecutively. In Figure 5, digits 1-3 corresponds to a run,
Tten, the movement of the handling equipment depends on only
th length of each run and the sequence of runs. The length of
a run implies the mumber of coniners of a group to be picked
uf in a specific yard-bay and the sequence of mns comesponds
to the visiting sequence of yard-bays. For example, SC moves
foom initial position t yard-bay 6 and picks up 3 containers. And
then, SC moves to yard-bay 3 and picks up 2 containers, and so
o1 Notice that each gene(container mumber} is encoded into an
independent digit in the sring, and that the relative locations of
tvio consecutive genes within 2 tun do net affect the total travel
distance. Thus, the travel distance within 2 yard-bay is oot
considered in the evafuation of the fitness function,

42 Reproduction Cperater

Reproduction operation is a process in which parents are selected
fron the total parent selution pool according 1o their fitness values,
The parcnts with higher fitness values have a higher probability of
conibuting one or more offspring in the next generation. We chose
a biased rouleitc wheel approach (what is called stochastic sampling
with teplacement) to implement the reproduction operater. Tn this
approach, each string is given a specific percent of the biased roulette
wheel. The percent is calculated by dividing its finess value by the

total fimess value of all swings. Each time we requirc another
offspring, a simple spin of the weighted roulette wheel yields the
reproduction candidare, In this way, strings with higher fimess values
have & larger number of offsprings in the next generation. Once a
string has been selected for reproduction, an exact teplica of the
string is made. This string is then enter into a mating poo, a tentative
new population, for forther genetic operation.

4.3 Crossover Operator

In the following, we define a crossover operation which keeps the
resulting solutions feasible. Pastialty mapped crossoverPMX), order
crossover{OX), and cycle crossover(CX) are commonly wsed for the
pemutation problems. The following sirings, St and S2, are used
io illustrale PMX operator:

§l= 2-45-3-89-6-1-7 and 52= 3-9-8-6-54-2-7-1

Firstly, (wo cut points are chosen ai random. Suppese that two
cur points are chesen as 51=24-53-8-9t6-1-7 and 52=39-8-
6-5-412-7-1, Then, genes bounded by the cut points, 3-8-91 and |
454, are exchanged each ofher so that 81 would posses some new
partial genetic information from S2 and vice versa. Then, we can
get SI'=2-4-56-5-416-1-7 and $§2°=3-9-8-3-8-91-2-7-1. However,
S1" and $2° have illegal structures because of the duplication of
genes. Therefore, the final step is to resolve the illegality by
replacing those duplicated genes with the genes at the comesponding
positions in the original chromosome. Two new offspring are §1"=
29-8-16-5-41-3-1-7 and 52"=6-4-3-13-8-91-2-7-1.
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Figure 6. An illustration of crossover using PMX operator

All the PMX, OX, znd CX are known to be successful in the
traveling salesmar problem. PMX tends to reflect the absoluie gene
positions because of point-to-point mapping, whereas OX tends to
reflect the relative gene positions because of slide filling of empty
spaces. For the detailed explanation of OX and CX operator, refer
to Chan and Tanst’s paper{3]. For OX and CX operators, genes for
different container groups become mixed with each other affer every
crossover operation, which results in an infeacible solution. But,
when using PMX operator, since the genes for a specific container
group Temain at the locations for the comesponding container group
gven after the crossover operation, the feasibility of the resulting
solution is maintained. This is why we choose PMX as the crossover
operator in this study.

Figure 6 shows an ilusiration of crossover using the PMX

A B . C

operator. Comsider the strings, 31 and 82 in Figure 6. Firstly, two
cut points are chosen at random. Then genes bounded by the cut
points, (2-5-4-3-19-27-14-20-7) and (2-3-19-20-22-14-17-18-29) are
exchanged(S1' and 527). The flegal structure because of the
duplication of genes is resolved by replacing those duplicated genes
with the genes at the comesponding positions in the original
chromosome(S1” and §2™).

4.4 Mutation Operator

Mutation & operated on a single chromosome. Firstly, one
container group is chosen at random. And then, two elements
{container number) in sections of the chromosome cozresponding 1o
the chosen container group are selected at random and exchanged
with each other. We call this motation “group based swap mutation”.

A 8] . Cc

PO Py P

st i15]29|s |1s]17i12|13| 1{2 | 5]4[3 119i2?|:4|2s| 7|8 [30|1a1z4]w| 9 Izs[zs|nizu|21|23|22i

Figura 7. An illustration of closs based swop mutation operator



Fejoly €

Figure 7 illustrates the process of application of the swap mutation
operator. Suppose that container group A is selected at random. Then,
tvio elements in seciions corresponding o container group A are

selected randomly and are exchanged with each other,

4.5 Improving Operator

Obviously, it 15 mreasonable to visit a yard-bay meliiple times
during a subtour as in fa} of Figure 8. Thus, whenever we find a
ciromosome with the case of muliiple visits is found, we modify
ite chromosome by moving containers in a same yard-bay to the
positions succeeding the one of the first occurrence as in (b} of
F.gure 8.
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653

strings which corresponds to a feasible solution. Q.ED.

From Propositions 1 and 2, we can conclude that if every
chromosome in the initial population is mapped into a feasible
solutton, every chromesome in 2 population of the succeeding
generations can also be mapped into a feasible solution. Since we
consider only the feasible solutions during the search process, the
computational time can be significantly reduced.

4.6 Fitness Function

We use the objective function {1} of the routing problem 10
evaluate the fitmess function.

The fitness function in a GA is a measure of goodness of a solution

_ A a8 c A 1} ¢

(aJcontei'nelm.158|?15?1211323212223!82?28302914 o|25|2s|2a| 11| 10| 12|20 4] 5
yard-bays slalelela|s|1|s]1|1r]7{7]|7|6|5|a]a]a]ls gla|s|afal7|7|2lz

{b)conlaherm.151?188?!21312321222'3181&2’?2330298911102625'2419‘2045
yard-bays glele|la|als|s|i|rt|1]7|7|7Ficje|o|a|9]|g9|z|a|aja|s|a]|w]|TiT]|2]|2

Figure 8. An illustration of improving operotion

{Proposition 1} If a chromosome is generated in the way of section
42, every chromosome can be mapped onto an unique feasible
solution in the search space.

{Prooft Every section has only contamers of the coresponding
contziner group in the section and constraint (7) and (8) are always
satisfied when chromosomes are penerated in the way of section 4.2.
Mole that any permutation of containers of & same container group
11 a section doesn't destrov the feasibility of the solution. QED.
{Proposition 2} When the PMX operation, the group-hased swap
mutation, ang the improving operation are performed in the routing
problem of container handling equipment, every child chromosome
resulting from parent chromosemes which are feasible 1o constraint
{7) and (8) can alse be mapped onto 4 feasible solution.

{Proof} Refer to the proof of proposition 1. The resulting siring after
cpplying the above three operations is also a permutation of parent

to the problem. Therefore, the fitness funcrion should have an inverse
comelation with the cost. This means that the genes (routes of SC)
with higher costs are considered to be less fit for offsprings to be
included in the next generation. We use the ranking method 1o
determine the relative fitess of genes in a GA population. In this
method, the population is sorted by the objective function value.
Every individual is then assigned an offspring count that is solely

2 function of their mrk.
5. Compuiational Experiments

In order fo test the performance of the genetic algorithm in this
paper, we solved a problem with a single yard block. As a test
problem, we chose the work schedule in Figue 1 and the yard map
in Figure 9. The work schedule consists of loading tasks for 30



test data, the moving time per umit yard-hay distance is assumed to
be 1,
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conainers which may be classified into 4 contamer groups. In this

1.2

23

For evaluating the performance of the genetic algorithm, we
developed & computer program using C language which was run en
a Pentium-based IBM-PC compatible. We tested the sensitivity of

25
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Figure 9. The distribution of confainers in a single block
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Objective value

—&—optimal

Generation No.(x100)
(Population=400, Generation=1000, Crossover=0.7, Mutation=0.1)
Figure 10. The trend of the objective fundtion value in the test problem
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Table 1. The average objective function value of solutions for 5 fest runs

population crossover 0.5 07 0.9
size mutation mean | worst | best | mean | worst | best | mean ! worst | best
0.05 111.8 126 93 | 988 122 92 92.0 94 B85
200 ; 015 107.0 125 g2 | 103.8 114 94 | 103.2 14 85
0.25 104.4 113 92 | 1014 112 92 | 105.2 114 92 |
0.05 g8.2 114 g2 | 934 106 & 924 94 92 5
600 015 83.4 107 8t | 960 105 8 89.2 92 79
| 0.25 o4.4 100 92 | 904 94 81 1 980 106 g2
Table 2. The average run time for 5 fest runs
unit=-second
crossover 0.5 0.7 0.9
mutation 005 | 015 | 025 | 005 | 015 | 025 | 0.05 | 015 | 025
population 200 688 | 720! 788 | 864 | 880 | 938 | 2022 2054| 1734
size 600 4965 | 504.6 | 533.2 | 658.6 | 657.0 | 843.0 {1584.011590.2 | 1260.2

vasious GA parameters to the solution.

The first parameter tested is the number of stings in every
generation, so called the population size, which is the size of the
parallel search. It is known that the necessary population size highly
depends on the problem characteristics and needs to be determuned
experimentally. We examined two population sizes, such as 200 and
60Qunits.

The second parameter tested is the number of generations. The
sclutions normally converge 1o a near- opfimal point as the nember
of generations increases. The necessary number of generations may
also depend on the problem characteristics related o other genetic
parameters. Therefore, it has also to be determined experimentally.
Tie performance of the algorithm is evahuated until the number of
generations reaches 1000 time units.

The third parameter tesied is the percentage of the crossover and
tte rretation. The probability of the crossover was set to be 0.5,
07, and 0.9, respectively. The probability of mutation tested is st
to 0.05, 0.15, and 0.23, respectively.

Figure 10 shows the trend of the average value of the objective

function as the number of generation increases. We can see that the
average of the objective function value converges lo the optimal
{The optimal solution is 79) or near-optimal solution. Five solutions
are obtained for each combination of parameters in Table 1. It shows
the mezn, the worst and the best of the 3 solutions. The population
size turned oot to be the most imperant factors 1o affect the quality
of the solution. Although the best solution was obizined when the
probebility of the crossover and the mutation is 0.9 and 0.15,
respectively, for the population size of 600, the number of samples
is not sufficient 10 conclude with confidence that it is the best
combination of the probabilities. The objective function value of the
best selution Dbtained by the genetie algorithm is within 16% above
the one of the optimal solution for all cases of the population size
of 600. Table 2 shows the average run time over the 5 test Tuns
for each parameters. The average nun time is largely dependent on
the population size. Thus, as the population size increases, the run
fime increases rapidly. And the average mun time is also dependent
on the probability of the crossover and the mutation. Figure 11
compares the objective function values for the different popuiation
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Figure 11. Objective function values for the different population sizes(POP)
sizes. The objective function value for all cases of the population Terminal is solved by the algorithm in this paper. Two straddle
size of 600 was smaller than one for all cases of the population size carriers{SCs) are utilized in this example, which is a typical case of
o 200. the loading operation in the Pusan container terminal. In Figures 12
and 13, the structure of the containership and the load profile are
8. A Practical Example provided. Based on the load profile, the work schedule for each SC
is obtained as in Figure 14, The work schedule is in the form of
A practical problem using 3 real data in 2 Pusan Container the sequence of clusters and the nuntber of containers of each cluster
C 1
< 2 i } Q
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Figure 12. A practical example of contoinership
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Figure 13. A practical example of load profile
which each SC is requested to pick up. For example, the work up 21 containers whose destination port is Hong Kong and whose
schedule of QC 1 is “to pick up 14 containers whose destination length is 20 feet and so on”. From the work schedule, we get the

port is Singapore and whose lengrh 15 20 feet, and then “to pick pumber of containers for each subtour. The total mmber of
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sequence !
> 1 2 3 4 5 i
ac 1 {subtour number)
{sC 1} container group SIN20 | HKG 20 | RTM 40 | SOU 40 | JED 20
guantity 14 21 5 9 9
sequence
d i 2 3 4 5 6 7
GG 2 {subtour numbar} _
(SC 2} container group HAM 40 | HAM 20 | RTM 20 | HAM 20 | SCU 20 | JED 20 | SCU 20
guantity 6 b} 10 4 28 7 ]
Figure 14. A work schedule based on the load profile in Figure 11
block 1 block 2 block 3
) RT¥Z20 | RT¥20
I Fiu20 | RTMzO | RTEZO
. SOU20 | 30020 | SCU2n | soUzn 0020 | saUzo | 30020} 50023 RT¥ZC | RTHZO
£ S0UZ0 | B0UZ0 | 30020 | SQUZe | SUlE0 | 50020 30020 | so02g | 30Uz0 | S0T20 | S0020 | 20020 RIRZ0 | RTHZO ) HTWEG

S0U20 | S0U20 ) souz0
SO020 | 30020 | S0UZ0 | 80020 { SO0Z0 | SCUZC

30020 | =OUz0 JEDZD

HANZO | HANZO | HAMZO

30U2¢ [ 50020 | S0VED | JED20 | JEDZO | JELZG

HANZE | HAKZO [ HANZO | HAMZQ | HAMZO | HANZO

JEDZ20

HANZD

JED) | JED20

HANZO | HANZO | HANZO

Hau40 BAN40 HAM4D

HaNa0
Haxa0

Figure 15. A practical example of yard map simplified somewhat

ccrtainers 1o be loaded is 128. The total number of containers
assigned to QC 1 is 58. The total mumber of containers to be loaded
by QC 2 is 70,

The initial number of containers of each group in cach yard-bay
is provided in Figure 13. The distance between two adjacent blocks
is assumed to be 100m while the distance between two adjacent
yard-bays is 3m, The moving time per meter and the setup time per

posttioning are assumed to be 1 and 0, respectively. The layout of
the contamer yard was modified for the convenience of analysis,
Each block is assumed to have & yard-bays although a block usually
consists of 20-22 yard-bays in practice. But, this simplification does
not distort the performance evaluation of the algorithm. And each
SC is assumed to move on the shortest travel path 10 get to another

position,
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sequence 1 2 3 4 5 6 7

blockbay | 1/1 | 23 | 2/6 | 35 : 36 | 37 | 27 | 283

18 | 15 28 {21 | 33

container ;
group init | SIN20 | SiN20 | SIN20 [HKG20{HK G20 HKGR0HK G20 RTMA0[SOU20:30U20|JED20 | JED20
quantity 5|5 | 4| 2 519 5|65 | 4 ‘ 5 3|6
{a) the route of 5C 1
sequence 1l 2i3 |4 |516 |7 |89/ |10]|41 1213714 15|16/ 17

blockbay ;141 |17 | 1/8 | 3/6 | 34 | 32 |31 | 34 |36 L 22 |13 |12 1411426 |22 | 12|14,

container :
o init [HAM4OHAMA0HAM20HAMPOIRTM20RTM20HAM2EHAM20ISOUZ0ISOUZ0| SOLIZ0 [SOU20(JED20 [JED20 (SOU20(S0U20;50U20;
quantity a2l 7ls|sala|r]o]e|ale]s]|a]2]

(b) the route of SC 2
Figure 16. The final salution for each SC for the practical problem

Firstly, the containers in the yard are split into two groups based
on the proximity of containers to the location of the cormesponding
ganry crane{QC). For example, QC 1 is requested to load 9
contaiers of JED 20, while QC 2 7 confainers of the same group.
There are 4, 6, and & containers in blocks 1, 2, and 3, respectively.
Since QC 1 is supposed to work in the right-hand side of QC 2, 9
containers focated rightward are assigned to QC 1, which are marked
by shading. And then, we determine the visiting sequence of yard-
bays for each SC. The population size and the number of generation
weie sel to be equal to 400 and 1000, respectively. The probability
of crossover and the probability of mutation were set to be equal
1o 1.7 and 0.1, respectively,

Figure 16 shows the result of the genetic algorithm in order to
detarmine the visiting sequence of each SC. The total travel times
of 3C 1 and SC 2 are 750 and 765, respectively. Thus, the objective
function has the value of 1513 for the selution. The run time on a
Pentium-based IBM-PC compatible was 309 seconds (389 seconds
for SC 1, 420 seconds for SC 2).

7. Conclusions

In this paper, we introduce 4 geneic algorithm to determine the
load sequence of export containers in a port container terminal. The
peculiarity of this encoding system is that it always produces feasible

chromosomes. We try to minimize the tolal travel fime of the siraddle
carriers which zre a popular material handling equipment in the yard.
The sequence of individual containers are determined although only
the travel time between different yard-bays is considered n the
evaluation of the fitness fumction. A numerical experiment is carried
out to evaluate the performance of the GA.

Other objective function than the travel time of strddle carrier
{8C) such as the stability of the vessel should be studied additionally
in order to cover all aspects of the load sequencing problem. Note
that each comiainer in the yard is encoded into a independent digit
in the string. Thus, it is a strong point of the genetic algerithm in
this paper thar we can ¢asily incorporate additional constraints into
or objective functions GA for desermining the sequence of individual
COMLALIETS.

Further researches are needed to develop mote efficient and
sophisticated genetic algorithms for the loading sequencing problem.
although the resulrs in this paper gave us a promising prospect for
GA applications.
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