• 제목/요약/키워드: container crane

Search Result 428, Processing Time 0.114 seconds

A Neighborhood Beam Search Algorithm for Routing Yard-Side Equipment in Port Container Terminals (컨테이너 터미널에서 야드장비의 경로결정을 위한 이웃에 대한 빔 탐색 방식)

  • 김기영;김갑환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.315-322
    • /
    • 1998
  • It is discussed how to route yard-side equipment during the loading operation in port container terminals. The number of containers to be picked up at each yard-bay, as well as the route of a yard-side equipment (for example, transfer crane or straddle carrier) in a yard, are determined. The objective of the problem is to minimize the total container handling time in the yard. An encoding method to represent nodes in the search space is introduced utilizing inherent properties of the optimal solution by which the search space is greatly reduced. A beam search algorithm is suggested. A numerical experiment is carried out to compared the performance of the beam search algorithm with those of other approaches.

  • PDF

A Dispatching Method for Automated Guided Vehicles to Minimize Delays of Containership Operations

  • Kim, Kap-Hwan;Bae, Jong-Wook
    • Management Science and Financial Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-25
    • /
    • 1999
  • There is a worldwide trend to automate the handling operations in port container terminals in an effort to improve productivity and reduce labor cost. This study iscusses how to apply an AGV(automated guided vehicle) system to the handling of containers in the yard of a port container ter-minal. The main issue of this paper is how to assign tasks of container delivery to AGVs during ship operations in an automated port container terminal. A dual-cycle operation is assumed in which the loading and the discharging operation can be performed alternately. Mixed integer linear program-ming formulations are suggested for the dispatching problem. The completion time of all the dis-charging and loading operations by a quayside crane is minimized, and the minimization of the total travel time of AGVs is also considered as a secondary objective. A heuristic method using useful properties of the dispatching problem is suggested to reduce the computational time. The perfor-mance of the heuristic algorithm is evaluated in light of solution quality and computation time.

  • PDF

RCGA-Based State Observer Design for Container Cranes (컨테이너 크레인을 위한 RCGA기반 상태관측기 설계)

  • Ahn, Jong-Kap;Lee, Yun-Hyun;Ryu, Ki-Tak;Yoo, Heui-Han;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.624-629
    • /
    • 2008
  • This paper presents a scheme for designing a state observer for container cranes. If the system is completely observable with a given set of outputs, then it is possible to determine the states that are not directly measured. We consider the reduced-order states observer with only trolley position detection and with trolley position and container angle detection. The gain matrix of the each state observer is adjusted using a RCGAs. A set of simulation works is carried out to demonstrate the effectiveness of the proposed scheme.

A Study On Operation Method of Handling Equipments in Automated Container Terminals (자동화 컨테이너터미널에서 운송장비의 운영방안에 관한 연구)

  • Choi, Hyung-Rim;Park, Nam-Kyu;Park, Byung-Joo;Kwon, Hae-Kyung;Yoo, Dong-Ho
    • IE interfaces
    • /
    • v.17 no.2
    • /
    • pp.233-241
    • /
    • 2004
  • The main subject to become a hub port is automation. The automated container terminal has already operated in advanced ports and it has been planned for the basic planning and operation design in domestic case. The key of automated container terminal is effective operation of both ATC(automated transfer crane) and AGV(automated guided vehicle) which is automated handling equipments. This is essential to productivity of automated container terminal. This study suggests the most optimal method of equipment operation in order to minimize loading time using each three types of effective ATC operation methods and AGV dispatching rules in automated container terminals. As the automated equipment operation causes unexpected deadlocks or interferences, it should be proceeded on event-based real time. Therefore we propose the most effective ATC operation methods and AGV dispatching rules in this paper. The various states occurred in real automated container terminals are simulated to evaluate these methods. This experiment will show the most robust automated equipment operation method on various parameters(the degree of yard re-marshaling, the number of containers and AGV)

An Economical Efficiency Comparison for Extend Method of Container Terminal Yard Scale followed by the Call of the Mega Ship (초대형 컨테이너선박의 기항에 따른 컨테이너 터미널 장치장 규모 확대방안의 경제성 비교)

  • Song, Yong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.353-359
    • /
    • 2009
  • Most domestic container terminals are lack of container storage capacity compared to the throughput of container. The main reason is the difference between the theoretical capacity applied to the development of terminals and the real capacity of a berth Another reason seems to be the increase of the container crane in number per berth to match the need for the getting larger vessel, which is resulted from the increase of the berth capacity from the start. This study, therefore, aims to suggest the economic size of container yard by comparing the existing one. For this the berth capacity was recalculated, the required yard size derived considering up to 10,000TEU vessel and then cost comparison done.

Probabilistic and spectral modelling of dynamic wind effects of quayside container cranes

  • Su, Ning;Peng, Shitao;Hong, Ningning;Wu, Xiaotong;Chen, Yunyue
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.405-421
    • /
    • 2020
  • Quayside container cranes are important delivery machineries located in the most frontiers of container terminals, where strong wind attacks happen occasionally. Since the previous researches on quayside container cranes mainly focused on the mean wind load and static response characteristics, the fluctuating wind load and dynamic response characteristics require further investigations. In the present study, the aerodynamic wind loads on quayside container cranes were obtained from wind tunnel tests. The probabilistic and spectral models of the fluctuating aerodynamic loads were established. Then the joint probabilistic distributions of dynamic wind-induced responses were derived theoretically based on a series of Gaussian and independent assumption of resonant components. Finally, the results were validated by time domain analysis using wind tunnel data. It is concluded that the assumptions are acceptable. And the presented approach can estimate peak dynamic sliding force, overturning moments and leg uplifts of quayside container cranes effectively and efficiently.

A Study on Wedge Angles of Wedge-type Rail Clamp for Preventing Jaw from Rotating (쐐기형 레일 클램프에서 조(jaw)의 회전을 방지하기 위한 적정 쐐기각에 대한 연구)

  • Shim J. J.;Lee S. W.;Han D. S.;Park J. S.;Jeon Y. H.;Lee H.;Han G. J.;Ahn C. W.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.735-740
    • /
    • 2005
  • In this paper, we designed a wedge type rail-clamp which can protect container crane from sudden wind blast with constant clamping force regardless of the operating period. When we design wedge type rail clamp, it is important to determine an angle of wedge which prevent rotating of jaw and for smooth operation when wind blows. Therefore, this paper suggest a process to decide an angle of wedge within proper range obtained by experimental analysis as well as FEA of the wedge type rail clamp. A model with $6^{\circ}$ wedge angle is the most proper model to use in rail clamp bemuse it generated satisfactory clamping force and rotating angle underdesign specification.

Container Selecting Methods for Remarshaling Considering Restricted Idle Time of Crane in an Automated Container Terminal (제한된 유휴시간을 고려한 자동화 컨테이너 터미널의 재정돈 컨테이너 선택 방안)

  • Kim, Ji-Eun;Park, Ki-Yeok;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.715-722
    • /
    • 2009
  • In Automated Container Terminal, the remarshaling is the task of rearranging containers for the effective exporting operations. Since available time for the remarshaling is usually restricted, all containers cannot be remarshaled. Therefore, this paper proposes a method that selects some containers from all export containers and then establishes the remarshaling plan with only the selected containers. The experimental results using simulation system shows that our proposal planning method that plans after selecting remarshaling containers is better than plans with all loading containers and remarshals during the available time.

Hydrodynamic interactions and coupled dynamics between a container ship and multiple mobile harbors

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.217-228
    • /
    • 2012
  • As the size of container ships continues to increase, not many existing harbors can host the super-container ship due to its increased draft and the corresponding dredging requires huge budget. In addition, the minimization of waiting and loading/offloading time is the most important factor in harbor competitiveness. In this regard, mobile-harbor concept has been developed in Korea to achieve much improved harbor capacity and efficiency. In developing the concept, one of the most important elements is the operability of crane between two or more floating bodies in side-by-side arrangement. The container ship is to be stationed through a hawser connection to an outside-harbor fixed-pile station with the depth allowing its large draft. The mobile harbors with smart cranes are berthed to the sides of its hull for loading/offloading containers and transportation. For successful operation, the relative motions between the two or more floating bodies with hawser/fender connections have to be within allowable range. Therefore, the reliable prediction of the relative motions of the multiple floating bodies with realistic mooring system is essential to find the best hull particulars, hawser/mooring/fender arrangement, and crane/docking-station design. Time-domain multi-hull-mooring coupled dynamic analysis program is used to assess the hydrodynamic interactions among the multiple floating bodies and the global performance of the system. Both collinear and non-collinear wind-wave-current environments are applied to the system. It is found that the non-collinear case can equally be functional in dynamics view compared to the collinear case but undesirable phenomena associated with vessel responses and hawser tensions can also happen at certain conditions, so more care needs to be taken.