• Title/Summary/Keyword: contact pressure distribution

Search Result 273, Processing Time 0.036 seconds

Wheel-Rail Contact Analysis considering the Deformation of Wheel and Axle (차륜 및 차축의 변형을 고려한 차륜-레일 접촉해석)

  • Choi, Ha-Young;Lee, Dong-Hyong;You, Won-Hee;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.20-27
    • /
    • 2010
  • A precise evaluation of the contact position and the distribution of contact pressure in a wheel-rail interface analysis is one of the most important procedures to predict fatigue life and wear of wheel and rail. This paper presents the analysis result of finite element method(FEM) to investigate how the deformation of a wheelset, which is the assembly of wheel and axle of a railroad vehicle, affect the contact analysis of wheel and rail. 3D-FEM was used to analyze three contact models; a model with only wheel, a model with wheelset, and a model with simplified wheel and rail geometry. The analysis result of the contact position and the distribution of contact pressure are discussed. It is shown that the analysis results of a model with wheelset represent largest value with respect to contact pressure and contact stress. Furthermore, it is found that the distribution of contact pressure and the contact position is highly affected by the deformation of wheel and axle. It is concluded that the deformation of axle should be considered to evaluate the exact contact parameters in a wheel-rail contact analysis.

A Study on the Characteristic of Contact Pressure for CPB (Cold Pad Batch) Padder Roll Controlled by Hydraulic Single Cell (단일 유압 Cell로 제어되는 CPB(Cold Pad Batch)용 패더롤의 접촉압력 특성 연구)

  • Cho, Kyung-Chul;Lee, Eun-Ha;Jo, Soon-Ok;Park, Si-Woo;Hwang, Youn-Sung;Kim, Soo-Youn
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.86-96
    • /
    • 2017
  • To make uniform pressure distributed over the contact surface was necessary to cold pad batch dyeing machine. In this study, to confirm characteristic of flexibility and the contact pressure distribution through experimental analysis of padder roll were controlled by hydraulic cell. When there were no load pressure only inner pressure, the value of displacement in the center of padder were greater than the end of the padder. The results of this study showed that the padder had the optimum value of inner pressure for uniform contact pressure distribution. Measuring the contact pressure in a padder system were driven by using a pre-scale film. Uniform contact pressure distribution of cell padder were a linearly with load pressure and inner pressure. When the load pressure was less than 8 tons, the inner pressure for the uniform contact pressure was 1~4 bar. The padder roll performance curves proposed in this study were available for practical production environments and various roll designs.

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

A Study on the Distribution of Plantar Pressure in Adult Hemiplegia during Gait with the Use of Cane

  • Cha, Yong-Jun;Kim, Kyoung
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.3
    • /
    • pp.49-53
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the plantar pressure distribution between the affected and unaffected side in adult hemiplegia during gait with the use of a quad-cane. Methods: Thirty-four stroke patients from 34 to 83 years of age were enrolled in this study, and in random order, all patients were asked to walk at their most comfortable speed three times along a walkway with the use of quad-cane over a period of three days. Plantar pressure distribution was measured with regard to foot contact pattern and center of pressure (CoP) trajectories during the stance phase, progressing from heel-strike to toe-off. The F-scan system was used to compare the foot pressure of the affected and unaffected sides. Results: A significant reduction in the total contact area, the width of fore foot (FF) and hind foot (HF), and anterior/posterior (AP) CoP trajectory of the affected side was found. However, contact pressure of the hind foot on the affected side during walking increased when compared to that on the unaffected side. Conclusion: We demonstrated that plantar pressure distribution on the affected side of adult hemiplegia patients was generally poorer than that on the unaffected side when these patients walked with cane assistance. However, the use of a quad-cane was shown to increase contact pressure of the hind foot on the affected side because weight can be borne on the affected side during heel-strike with use of the cane.

A Study on the Attenuation of Flip-over Vibration in the Flat Blade Windshield Wiper (플랫 블레이드 윈드실드 와이퍼의 역전 진동 저감에 관한 연구)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.974-984
    • /
    • 2012
  • This research introduces a new method to attenuate flip-over vibration generation in the flat blade windshield wiper by adjusting the contact pressure between the windshield glass and the blade. The knocking force in the flip-over action of the blade is decreased by inducing gradual tilting-over along the rubber strip of the blade. This gradual tilting-over is induced by introducing a non-uniform contact pressure distribution between the blade and windshield glass. The contact pressure distribution is adjusted by controlling the unloaded profile of the body spring in the blade using a procedure proposed in a previous study. Two blades, one blade designed to generate a uniform pressure distribution and the other designed to generate non-uniform pressure distribution, are developed using the procedure. Contact pressure distributions of the developed blades are measured using a special device and compared with the intended distributions confirming the similarities between the two groups. Vertical and lateral vibrations of the two blades are measured under realistic operating condition simulated by a wiper test rig. The vertical vibrations of the blade with non-uniform contact pressure are substantially smaller than corresponding vibrations of the blade with uniform contact pressure over the entire rubber strip.

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.

Development and Application of System for Pressure Distribution Measurement (압력분포 측정용 시스템 개발 및 응용)

  • 김용환;박성하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.134-140
    • /
    • 2003
  • The film sensor is used for measuring pressure distribution at planar area, especially at a small space or gap. The present paper deals with the development of film type sensors and system for pressure distribution measuring. The developed system is consist of (1)film sensor with 40/sup */40 array, (2)PCI interface card with maximum sampling rate of 100㎐, and (3)software for data processing and real-time display. The contact pressure test of wiper blade and front glass of vehicle was performed with wiper blade by 40cm. Generally spring force of wiper arm is designed at 0.7∼1kN. Test results of total force was 9.4N and 7.1N in each driver and passenger toward. The paper suggested possibility for base definition in wiper design. A windshield wiper blade experiment revealed that the system successfully measured the contact force distribution during static state, showing the usefulness of the developed system.

The Elastic Contact Analysis of 3D Rough Surface of Nongaussian Height Distribution (Kurtosis를 고려한 3차원 거친 표면의 탄성접촉해석)

  • Kim, Tae-Wan;Koo, Young-Pil;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.53-60
    • /
    • 2001
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have the nongaussian height distribution. So, in this study, contact simulations are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface considering the kurtosis is generated numerically And the effects of kurtosis on real contact area fraction, average gap, and mean asperity contact pressure are studied. It will be shown that the real contact area fraction and the mean asperity contact pressure are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

Influence of Frictional Behavior Depending on Contact Pressure on Springback at U Draw Bending (접촉 압력에 의한 마찰 특성 변화가 U 드로우 굽힘에서의 스프링백에 미치는 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.344-349
    • /
    • 2011
  • Variation of contact pressure causes change of friction coefficient, which in turn changes stress distribution in the sheet being formed and final springback. In the present study, U-draw bending experiments were carried out under constant blank holding force(BHF) and different blank sizes, and finite element analysis was conducted with and without considering contact pressure effect on friction. When the BHF was sufficiently high, the degree of springback was different between constant blank holding pressure condition and that with varying blank holding pressure. Finite element analysis considering the influence of contact pressure effect on friction could explain the occurrence of springback.

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.