• Title/Summary/Keyword: contact lens material

Search Result 73, Processing Time 0.02 seconds

Estimation of Moisture Content in Comminuted Miscanthus based on the Intensity of Reflected Light

  • Cho, Yongjin;Lee, Dong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.296-304
    • /
    • 2015
  • Purpose: The balance between miscanthus production and its cost effectiveness depends greatly on its moisture content during post processing. The objective of this research was to measure the moisture content using a non-destructive and non-contact methodology for in situ applications. Methods: The moisture content of comminuted miscanthus was controlled using a closed chamber, a humidifier, a precision weigher, and a real-time monitoring software developed in this research. A CMOS sensor equipped with $50{\times}$ magnifier lens was used to capture magnified images of the conditioned materials with moisture content level from 5 to 30%. The hypothesis is that when light is incident on the comminuted particles in an inclined manner, higher moisture content results in light being reflected with a higher intensity. Results: A linear regression analysis for an initiative hypothesis based on general histogram analysis yielded insufficient correlations with low significance level (<0.31) for the determination coefficient. A significant relationship (94% confidence level) was determined at level 108 in a reverse accumulative histogram proposed based on a revised hypothesis. A linear regression model with the value at level 108 in the reverse accumulative histogram for a magnified image as the independent variable and the moisture content of comminuted miscanthus as the dependent variable was proposed as the estimation model. The calibrated linear regression model with a slope of 92.054 and an offset of 32.752 yielded 0.94 for the determination coefficient (RMSE = 0.2%). The validation test showed a significant relationship at the 74% confidence level with RMSE 6.4% (n = 36). Conclusions: To compensate the inconsistent significance between calibration and validation, an estimation model robust against various systematic interferences is necessary. The economic efficiency of miscanthus, which is a promising energy resource, can be improved by the real-time measurement of its crucial material properties.

Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells (IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법)

  • Kim, Sung-Chul;Yoon, Ki-Chan;Kyung, Do-Hyun;Lee, Young-Seok;Kwon, Tae-Young;Jung, Woo-Won;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

A study of Conjunctival Cellular Changes in Dry Eye Patients by Impression Cytology (Impression cytology를 이용한 건성안의 결막 세포변화에 관한 연구)

  • Kim, Jai-Min;Kho, Eun-Gyung;Chae, Soo-Chul;Kim, Soon-Ae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.333-343
    • /
    • 2004
  • Impression cytology refers to application of cellulose acetate filter material to the ocular surface to remove the superficial layers of the conjunctival epithelium. The technique is non-invasive, is easy to perform, causes minimal discomfort to the patient, and can be used to follow changes in the conjunctival ocular surface over time. With this method, the morphology of the conjunctival ocular surface can be studied and the degree of squmaous metaplasia assessed. This study was performed to evaluate the conjunctival surface by impression cytology in dry eye patients. A total of 70 students with no contact lens wearing history were recruited. Subjects were required to fill in a McMonnies dry eye symptom questionnaire. The non-invasive tear thinning time(TIT) test of each subject was measured, followed by Schirmer tear test(STI), tear film break-up time(TBUT) tests and Rose-bengal staining were performed as a baseline. Conjunctival epithelial cells from the inferior bulbar conjunctiva were harvested by the impression cytology technique. The specimens collected were labelled and stained with PAS(Periodic Acid Schift)-haematoxylin. The goblet cells and conjunctival epithelial cells were observed under a light microscope of 400x magnification. The specimens were classified according to the Nelson Grading scale which was based on the degree of squamous metaplasia such as changes of goblet cells density, size/form, N:C(nucleus : cytoplasm) ratio. Dry eye patients were observed morphological changes of the epithelial cells, different nuclear alterations, decrease of the goblet cells density. The degree of cytological changes was related to severity of dry eye conditions. When the epithelial cell morphology was graded according to the system described by Nelson, specimens from the control group revealed 91.43% of the eyes to be grade 0 and 8.57% to be grade 1, whereas of the dry eye patients, 20% were grade 0, 42.86% grade 1, 34.29% grade 2 and 2,86% grade 3. Impression cytology represents a non- or minimally invasive biopsy of the ocular surface epithelium with no side effects or contraindications. It has demonstrated to be a useful diagnostic aid for a wide variety of processes involving the ocular surface. This technique is a safe, simple method and may help increase understanding of various ocular surface alterations in dry eye patients.

  • PDF