• Title/Summary/Keyword: contact dynamics

Search Result 375, Processing Time 0.031 seconds

Wheel/Rail Contact Analysis with Consideration of Friction and Torque (마찰과 토크를 고려한 차륜/레일 접촉 해석)

  • Song, Ki-Seok;Han, Seung-Hee;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • Wheel/rail contact is a significant problem in railway dynamics. In this paper, the wheel/rail contact is examined analytically and numerically as a contact problem between two cylinders where torque and friction have effect. Furthermore, the contact of a real wheel and rail is investigated numerically where the normal and shear force act. This study demonstrates that the wheel/rail contact is a process that generates traction force through creep where rolling and sliding occurs simultaneously depending on the shape of the wheel and rail, and the friction coefficient between them.

Analysis of Impact Responses Considering Sensor Dynamics (센서 동역학을 고려한 충격응답해석)

  • B. J. Ryu;K. Y. Ahn;B. H. Kwon;I. S. Oh;Lee, G. S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.373.1-373
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems. Since the impact force and response are measured indirectly through the sensors, it is difficult to predict the impact force and acceleration. In this study, contact force model based on the Hertz law is proposed in order to predict the impact force correctly. (omitted)

  • PDF

Flow-induced instability and nonlinear dynamics of a tube array considering the effect of a clearance gap

  • Lai, Jiang;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1650-1657
    • /
    • 2019
  • Fluidelastic instability and nonlinear dynamics of tube bundles is a key issue in a steam generator. Especially, once the post-instability motion of the tube becomes larger than the clearance gap to other tubes, effective contact or impact between the tubes under consideration and the other tube inevitable. There is seldom theoretical analysis to the nonlinear dynamic characteristics of a tube array in two-phase flow. In this paper, experimental and numerical studies were utilized to obtain the critical velocity of the flow-induced instability of a rotated triangular tube array. The calculation results agreed well with the experimental data. To explore the post-instability dynamics of the tube array system, a Runge-Kutta scheme was used to solve the nonlinear governing equations of tube motion. The numerical results indicated that, when the flow pitch velocity is larger than the critical velocity, the tube array system is undergoing a limit cycle motion, and the dynamic characteristics of the tube array are almost similar for different void fractions.

Simulation of Meshing for the Spur Gear Drive with Modified Tooth Surfaces

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.490-498
    • /
    • 2000
  • The authors have proposed methods (lead crowning and profile modification) for modifying the geometry of spur gears and investigated the contact pattern as well as the transmission errors to recommend the appropriate amount of modification. Based on the investigation, dynamic load of the modified spur gear drive has been calculated, which is helpful to predict the life of the designed gear drive. Computer programs for simulation of meshing, contact and dynamics of the modified spur gears have been developed. The developed theory is illustrated with numerical examples.

  • PDF

Visualization of Vortex-induced Mixing at the Liquid-liquid-gas 3-phase Contact Line (액체-액체-기체 3상 접촉선에서의 와류에 의한 혼합 가시화)

  • Kim, Tae-Hong;Kim, Hyoungsoo;Kim, Seungho;Kim, Ho-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.21-24
    • /
    • 2012
  • Although the motion of the three-phase contact line on a solid substrate has been extensively studied thus far, the understanding of the dynamics of the contact line of liquid/liquid/gas phases is far from complete. Here we deposit a drop of isopropyl alcohol (IPA) on water and HFE-7100 whose free surfaces are exposed to air to observe the flow field around the contact line. By combining the shadowgraph and high-speed imaging techniques, we find that vortices are spontaneously generated at the contact line, which grow in size with time. The flow is attributed to the Marangoni stress that pulls a liquid of lower-surface tension toward a liquid surface having a higher surface tension. However, it is not still clear why the entrained lower-surface-tension liquid should whirl rapidly beneath the contact line. We also visualize the flow by the particle image velocimetry (PIV) to find out that the rotational velocity reaches the order of 1 mm/s near the free surface.

An Analysis on the Variation of the Wheel/Rail Contact Geometry with the Wheel Wear of EMU (전동차 차륜 마모에 따른 차륜/레일 기하학적 접촉 특성 변화 분석)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.854-859
    • /
    • 2008
  • In a railway vehicle, contact between wheel and rail is a peculiar characteristic and variations of wheel and rail profile influence on the dynamic characteristics of railway vehicle. Thus the variations of the wheel and rail profile are very important in railway dynamics. Recently a research relating to active steering to improve the curving performance of vehicle is progressing actively at home and abroad. In this field, a pre-study for the wheel/rail contact geometry is needed and especially the variation of the wheel/rail contact geometry with wheel wear is the key design parameter to develop the controller of the active steering bogie. In this paper, we have experimentally studied to analyze the variation of the wheel/rail contact geometry with wheel wear as a pre-study to develop the active steering bogie for electric multiple unit (EMU). For this, we have made an experiment with EMU operating in curving area. We have measured the wear profiles of the wheel of the test vehicle and analyzed the wheel/rail contact geometry with a mileage of the test vehicle. In experiment with test vehicle, we have got the useful data to design the steering controller of the wheelset.

  • PDF

A Verification of the Contact Dynamics of the Current Collection System on a Test Run (실차실험에 의한 집전계의 접촉 동특성 규명)

  • Kim, Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.414-419
    • /
    • 2007
  • The contact characteristics of the current collection system are investigated by analyzing data collected during a test run of the Korean high speed rail vehicle. For the analysis, the signals from accelerometers and load cells attached to the various parts of the pantograph are analyzed in both the time and frequency domains. In the frequency domain, the pantograph response consists of low frequency components related to the rigid-body motion of the panhead assembly and high frequency components due to the structural vibration modes of the pantograph. The analysis shows that the inclusion of the high frequency structural vibration modes of the pantograph in the contact force calculation has a negligible effect on the predicted mean value of the contact force but significantly affects the magnitude of its fluctuations. This finding implies that numerical simulations using lumped element models of the pantograph may accurately predict the mean contact force but is limited in its capacity for predicting the fluctuation about the mean. Since the ratio of the fluctuation to the mean in the contact force increases with increased train speed, the limitation of the predictions based on numerical simulation results becomes more pronounced at higher train speed.

A development of the 2-point Whee-Rail Contact Algorithm (휠-레일 2점 접촉 해석 알고리즘 개발에 관한 연구)

  • Jeong, Gi-Beom;Park, Tae-Won;Park, Jae-Heung;Chung, Nam-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1888-1893
    • /
    • 2011
  • Considering the dynamic performance and stability of railroad vehicles has begun to grab the attention because of developing the high speed train recently. A development based on an analysis of dynamics and verification has to be required to study the stability of vehicle performance. Several ways of analysis were using the look-up table to apply the wheel-rail contact characteristics quickly, whereas there is a constraint of the wheelset lateral displacement. In this study, an development of searching the wheel-rail contact position has been provided. The 2-point contact between wheel and rail during the driving condition can be calculated by numerical analysis. Moreover, a reliability is verified by comparing the result with a commercial program.

  • PDF

Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load (경방향 하중을 받는 스핀들 베어링 계의 동특성 연구)

  • Choi, Chun-Suk;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.

Experimental Evaluation of HDD's Non-Contact Start/Stop Motion Using Shape Memory Alloy Actuator (SMA 작동기를 이용한 HDD의 비접촉 시동 및 정지 기구의 실험적 성능 고찰)

  • 임수철;박종성;최승복;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1122-1129
    • /
    • 2001
  • In this work, we propose a new type of HDD suspension featuring shape memory ally (SMA) actuator in order to prevent the contact between the slider and disk. The principal design parameters are obtained from the modal analysis using finite element analysis, and then the dynamic model is established to formulate the control scheme for Non-Contact Start/Stop mode drive. Subsequently, a robust Η$_{\infty}$, control algorithm is designed by integrating experimentally-obtained SMA actuator dynamics to the proposed suspension system. The controller is empirically realized and control results for different load/unload profiles are presented in time domain. In addition, the contact signal between the slider and disk is measured by the electrical resistance method.istance method.

  • PDF