• Title/Summary/Keyword: contact displacement

Search Result 592, Processing Time 0.029 seconds

A Non-Cirucular Contact Arc Model for Temper Rolling

  • Y.L. Liu;Lee, W.H.;Cho, K.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.293-300
    • /
    • 1999
  • A mathematical model for the analysis of roll gap phenomena in strip temper rolling process is described. The mechanical peculiarities of temper rolling process, such as high friction value and non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central restricted deformation (preliminary displacement or sticking) zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and arbitrary contact arc shape is permitted. The strip deformation is modeled by slab method and the entry and exit elastic deformation zones are included. The restricted deformation zone near the neutral point is also considered. The concept and the calculation method of limiting preliminary displacement are used to determine the length of the central restricted deformation zone. The comparison of the model results with the measured mill data is also made.

  • PDF

Application of the Preliminary Displacement Principle to the Temper Rolling Model

  • Lee, Won-Ho;Yuli Liu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.225-231
    • /
    • 2001
  • A mathematical model for the analysis of roll gap phenomena in the strip temper rolling process is described. A new approach to solve the roll indentation and diverging problem in modeling of severe temper rolling cases is obtained by adopting the preliminary displacement principle of two contacted rough bodies to describe the friction behavior in the roll gap. The mechanical peculiarities of the temper rolling process, such as a high friction value with high roughness rolls and a non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central preliminary displacement zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and an arbitrary contact are shape is permitted. The strip deformation is modeled by the slab method and the entry and exit elastic deformation zones are included. The preliminary displacement principle is used to determine the boundaries and to calculate the friction of the central preliminary displacement zone. The model is calibrated against the production mill data and installed in the setup computer of a temper rolling mill in POSCO. The validity and precision of the model have been proven through a comparison of the measured roll forces and the predicted ones.

  • PDF

Analysis of underground post-tensioned precast concrete box utility tunnel under normal fault displacement

  • Wu, Xiangguo;Nie, Chenhang;Qiu, Faqiang;Zhang, Xuesen;Hong, Li;Lee, Jong-Sub;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.69-79
    • /
    • 2022
  • For long underground box utility tunnels, post-tensioned precast concrete is often used. Between precast tunnel segments, sealed waterproof flexible joints are often specified. Fault displacement can lead to excessive deformation of the joints, which can lead to reduction in waterproofing due to diminished contact pressure between the sealant strip and the tunnel segment. This paper authenticates utilization of a finite element model for a prefabricated tunnel fault-crossing founded on ABAQUS software. In addition, material parameter selection, contact setting and boundary condition are reviewed. Analyzed under normal fault action are: the influence of fault displacement; buried depth; soil friction coefficient, and angle of crossing at the fault plane. In addition, distribution characteristics of the utility tunnel structure for vertical and longitudinal/horizontal relative displacement at segmented interface for the top and bottom slab are analyzed. It is found that the effect of increase in fault displacement on the splice joint deformation is significant, whereas the effects of changes in burial depth, pipe-soil friction coefficient and fault-crossing angle on the overall tunnel and joint deformations were not so significant.

Development of a Sensor System to Measure Real Time Vibro Displacement of Civil Structure

  • Sungjun Bum;Kim, Hiesik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.3-94
    • /
    • 2001
  • A sensor system was developed to measure displacement of civil structure at a long distance. A He-Ne Laser tube and photodiodes ware used for non-contact measurement. This system allows real time vibration displacement measurement of bridges. The measured displacement data is displayed on computer monitor graphically and also in digit. The accuracy of the displacement measurement shows 2mm in vertical vibration. It shows remote inspection of the vibration of long bridges and buildings.

  • PDF

Fretting Corrosion Behavior of Silver-Plated Electric Connectors with Constant Displacement Amplitude (일정 변위 진폭조건에서의 은도금한 커넥터의 미동마멸부식 거동)

  • Oh, Man-Jin;Kim, Min-Jung;Kim, Taek-Young;Kang, Se-Hyung;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • Fretting corrosion tests are conducted with a constant displacement amplitude using silver-plated brass coupons to investigate the effect of contact pressure on fretting corrosion. Three behaviors are identified based on the change in electric resistance and friction coefficient during the fretting test period, and the identified behaviors are dependent on the magnitude of the applied load. The failure cycle ($N_f$) with an electric resistance of 0.1 D cannot be achieved due to the adhesion behavior of the metal and metal contact under the higher applied load of 0.45 N. This suggests that an average contact pressure higher than 159 MPa for the silver-coated connector is desirable to gain an almost infinite lifetime. The relationship between the electric contact resistance (R) and the average contact pressure (p) can be written as $p=106.2{\times}{\Omega}^{-1.5}$.

The Kinematical Analysis of Li Xiaopeng Motion in Horse Vaulting (도마운동 Li Xiaopeng 동작의 운동학적 분석)

  • Park, Jong-Hoon;Yoon, Sang-Moon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.81-98
    • /
    • 2003
  • The purpose of this study is to closely examine kinematic characteristics by jump phase of Li Xiaopeng motion in horse vaulting and provide the training data. In doing so, as a result of analyzing kinematic variables through 3-dimensional cinematographic using the high-speed video camera to Li Xiaopeng motion first performed at the men's vault competition at the 14th Busan Asian Games, the following conclusion was obtained. 1. It was indicated that at the post-flight, the increase of flight time and height and twisting rotational velocity has a decisive effect on the increase of twist displacement. And Li Xiaopeng motion showed longer flight time and higher flight height than Ropez motion with the same twist displacement of entire movement. Also the rotational displacement of the trunk at peak of COG was much short of $360^{\circ}$(one rotation) but twist displacement showed $606^{\circ}$. Likewise, Li Xiaopeng motion was indicated to concentrate on twist movement in the early flight. 2. It was indicated that at the landing, Li Xiaopeng motion gets the hip to move back, the trunk to stand up and the horizontal velocity of COG to slow down. This is thought to be the performance of sufficient landing, resulting from large security of rotational displacement of airborne and twist displacement. 3. It was indicated that at the board contact, Li Xiaopeng motion made a rapid rotation uprighting the trunk to recover slowing velocity caused by jumping with the horse in the back, and has already twisted the trunk nearly close to $40^{\circ}$ at board contact. Under the premise that elasticity is generated without the change of the feet contacting the board, it will give an aid to the rotation and twist of pre-flight. Thus, in the round-oH phase, the tap of waist according to the fraction and extension of hip joint and arm push is thought to be very important. 4. It was indicated that at the pre-flight, Li Xiaopeng motion showed bigger movement than the techniques of precedented studies rushing to the horse, and overcomes the concern of relatively low power of jump through the rapid rotation of the trunk. Li Xiaopeng motion secured much twist distance, increased rotational distance with the trunk bent forward, resulting in the effect of rushing to the horse. 5. At horse contact, Li Xiaopeng motion makes a short-time contact, and maintains horse take-off angle close to vertical, contributing to the increase of post-flight time and height. This is thought to be resulted from rapid move toward movement direction along with the rotational velocity of trunk rapidly earned prior to horse contact, and little shave of rotation axis according to twist motion because of effective twist in the same direction.

Analysis of Static and Dynamic Frictional Contact of Deformable Bodies Including Large Rotations of the Contact Surfaces

  • Lee, Kisu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1276-1286
    • /
    • 2002
  • The numerical techniques are presented to solve the static and dynamic contact problems of deformable bodies having large rotations of the contact surfaces. The contact conditions on the possible contact surfaces are enforced by using the contact error vector, and an iterative scheme similar to augmented Lagrange multiplier method is employed to reduce the contact error vector monotonically. For dynamic contact problems using implicit time integration, a contact error vector is also defined by combining the displacement, velocity, and acceleration on the contact surface. The suggested iterative technique is implemented to ABAQUS by using the UEL subroutine UEL. In this work, after the computing procedures to solve the frictional contact problems are explained, the numerical examples are presented to compare the present solutions with those obtained by ABAQUS.

Evaluation of adjacent tooth displacement in the posterior implant restoration with proximal contact loss by superimposition of digital models

  • Jo, Deuk-Won;Kwon, Min-Jung;Kim, Jong-Hee;Kim, Young-Kyun;Yi, Yang-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.88-94
    • /
    • 2019
  • PURPOSE. This study was conducted to investigate patterns of adjacent tooth displacement in the posterior implant with interproximal contact loss (ICL) by 3-D digital superimposition method. MATERIALS AND METHODS. Posterior partially edentulous patients, restored with implant fixed partial prostheses before 2011 and suffered from food impaction of ICL between 2009 and 2011, were included. Two dental casts, at the time of delivery and at the time of food impaction in a same patient, was converted into 3-D digital models through scanning and superimposition was performed to assess chronologic changes of the dentition. Directions of tooth displacement were evaluated and the amount of ICL was calculated. Correlations between the amount of ICL and elapsed time, or between the amount of ICL and age after function, were assessed at a significance level of P<.05. RESULTS. A total number of 13 patients (8 males, 5 females) with a mean age of $65.76{\pm}9.94years$ and 17 areas (4 maxillae, 13 mandibles) were included in this retrospective study. Teeth adjacent to the implant restoration showed complex displacements but characteristic tendency according to the location of the arch. The mean amount of ICL was $0.33{\pm}0.14mm$. Elapsed time from function to ICL was $61.47{\pm}31.27months$. There were no significant differences between the amount of ICL and elapsed time, or age (P>.05). CONCLUSION. Natural teeth showed various directional movements to result in occlusal change in the arch. The 3-D superimposition of chronologic digital models was a helpful method to analyze the changes of dentition and individual tooth displacement adjacent to implant restoration.

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

A Study on Rolling Contact Behaviors of a Flat Rough Surface with a Smooth Ball (구와 평면간의 구름접촉거동에 관한 연구)

  • 김경모;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.554-570
    • /
    • 1990
  • he rolling contact behaviors between a smooth ball and a flat rough surface under dynamic load are intricately affected by many factors, such as the diameter of a ball, normal load and the roughness of a flat surface etc. Accordingly, the experimental study is done to find them on the base of elastic hysteresis loss as theoretical approach is very difficult. The experimental apparatus composed of damped-free vibration system is used. This paper investigates the damping characteristics on the rolling contact area through rolling friction force and logarithmic decrement versus displacement obtained in accordance with the variations of those factors, and presents a new experimental method to find out contact width using the relations of logarithmic decrement and rolling friction force with displacement.