• 제목/요약/키워드: contact displacement

Search Result 592, Processing Time 0.176 seconds

Analysis of DIC Platform and Image Quality with FHD for Displacement Measurement (FHD급 DIC 플랫폼의 변위계측용 영상품질 분석)

  • Park, Jongbae;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.105-111
    • /
    • 2018
  • This paper presents the analysis of image quality with FHD(Full HD) resolution camera equipped DIC(Digital Image Correlation) platform for the measurement of the architectural structure's relative displacement. DIC platform was designed based on i.MX6 of Freescale. Displacement measurement based on DIC method, the error is affected by image quality factors as pixel number, brightness, contrast, and SNR[dB](Signal to Noise Ratio). The effect were analyzed. The displacement of ROI(Region Of Interest) area within the image was measured by sub-pixel units based on DIC method. The non-contact telemetry property of DIC method, it can be used to long distance non-contact measurement. The various displacement results was measured and analyzed with the image quality factor adjustment according to the distance(25m, 35m, 50m).

Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector (접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석)

  • Lee, Kisu;Kim, Bang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.305-319
    • /
    • 2000
  • Numerical solution lot frictional contact problems of nonlinearly deformable bodies having large deformation is presented. The contact conditions on the possible contact points are expressed by using the contact error vector, and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration the solution consists of two steps : The first step is to revise the contact force by using the contact error vector given by the previous geometry, and the second step is to compute the displacement and the contact error vector by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative scheme to the correct solution is analyzed, and the numerical simulations we performed with a rigid-plastic membrane and a nonlinear elastic beam.

  • PDF

THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PARTIALLY EDENTULOUS IMPLANT PROSTHESIS WITH VARYING TYPES OF NON-RIGID CONNECTION (부분 무치악 임플랜트 보철 수복시 자연치와의 비고정성 연결형태에 따른 3차원 유한요소법적 연구)

  • Lee, Seon-A;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.101-124
    • /
    • 1996
  • In this study, we designed the finite element models of mandible with varying their connecting types between the prosthesis on implant fixture and 2nd premolar, which were free-standing case(Mf), precision attachment case(Mp), semiprecision attachment case(Ms) and telescopic case(Mt). The basic model of the designed finite element models, which contained a canine and the 1st & 2nd premolar, was implanted in the edentulous site of the 1st & 2nd molar by two implant fixtures. We applied the load in all models by two ways. A vertical load of 200N was applied at each central fossa of 2nd premolar and 1st implant. A tilting load of 20N with inclination of $45^{\circ}$ to lingual side was applied to buccal cusp tips of each 2nd premolar and 1st implant. And then we analyzed three-dimensional finite element models, making a comparative study of principal stress and displacement in four cases respectively. Three-dimensional finite element analysis was performed for the stress distribution and the displacement using commercial software(IDEAS program) for SUN-SPARC workstation. The results were as follows : 1 Under vertical load or tilting load, maximum displacement appeared at the 2nd premolar. Semiprecision case showed the largest maximum displacement, and maximum displacement reduced in the order of precision attachment, free-standing and telescopic case. 2. Under vertical load. the pattern of displacement of the 1st implant appeared mesio-inclined because of the 2nd implant splinted together. But displacement pattern of the 2nd premolar varied according to their connection type with prosthesis. The 2nd premolar showed a little mesio-inclined vertical displacement in case of free-standing and disto-inclined vertical displacement due to attachment in case of precision and semiprecision attachment. In telescopic case, the largest mesio-inclined vertical displacement has been shown, so, the 1st premolar leaned mesial side. 3. Under tilting load, The pattern of displacement was similar in all four cases which appeared displaced to lingual side. But, the maximum displacement of 2nd premolar appeared larger than that of the first implant. Therefore, there was large discrepancy in displacement between natural tooth and implant during tilting load. 4. Under vertical load, the maximum compressive stress appeared at the 1st implant's neck. Semiprecision attachment case showed the largest maximum compressive stress, and the maximum compressive stress reduced in the order of precision attachment, telescopic and free-standing case. 5 Under vertical load, the maximum tensile stress appeared at the 2nd implant's distal neck. Semiprecision attachment case showed the largest maximum tensile stress, and the maximum tensile stress reduced in the order of precision attachment, telescopic and free-standing case. 6. Under vertical load or tilting load, principal stress appeared little between natural tooth & implant in free-standing case, but large principal stress was distributed at upper crown and distal contact site of the 2nd premolar in telescopic case. Principal stress appeared large at keyway & around keyway of distal contact site of the 2nd premolar in precision and semiprecision attachment case, appearing more broad and homogeneous in precision attachment case than in semiprecision attachment case.

  • PDF

Analytical Theory of Ball Bearing Considering Waviness of Rolling Elements (구름요소의 Waviness 를 고려한 볼베어링 해석 이론)

  • 정성원;장건희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.275-286
    • /
    • 2001
  • The research presents an analytical theory to calculate the characteristics of the bal bearing with waviness in its rolling elements considering the centrifugal force and gyroscopic moment of bal. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. and the waviness of rolling elements is modeled by sinusoidal function to calculate the contact force at each ball. The numerical solutions of governing equation of berating due to waviness are calculated by using the Newton-Raphson method. The accuracy of the research is validated by comparing the contact force. contact angle in case of considering the centrifugal force and gyroscopic moment of bal and the contact force and vibration frequencies in cases of considering waviness with the prior researches respectively. It investigates the stiffness, contact force. displacement and vibration frequencies of the ball bearing considering not only the centrifugal force and gyroscopic moment of ball but also the waviness of the rolling elements.

  • PDF

Dynamic Contact Analysis of a Wheel Moving on an Elastic Beam with a High Speed (탄성 보 위를 고속 주행하는 바퀴의 동접촉 해석)

  • Lee, Ki-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.541-549
    • /
    • 2008
  • The dynamic contact between a high-speed wheel and an elastic beam is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the numerical solution, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the numerical examples, it is shown that the acceleration contact constraint including the Coriolis and centripetal accelerations are crucial for the numerical stability.

A Study on Third Body Abrasion in the Small Clearance Region Adjacent to the Contact Area

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • Abrasion in fretting wear mechanism is studied experimentally with the specimens of two different shapes of spacer grid spring and fuel tubes of a nuclear fuel. Reciprocating sliding wear test has been carried out in the environment of air and water at room temperature. Especially, third body abrasion is referred to for explaining the wear region expansion found during the slip displacement increase with constant normal contact farce. It is found that the expansion behaviour depends on the contact shape. The small clearance between the tube and spring seems to be the preferable region of the wear particle accumulation, which causes third body abrasion of the non-contact area. Even in water environment the third body abrasion occurs apparently. Since the abrasion on the clearance contributes wear volume, the influence of the contact shape on the severity of third body abrasion should be considered to improve the grid spring design in the point of restraining wear damage of a nuclear fuel.

Crack-contact problem for an elastic layer with rigid stamps

  • Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.285-296
    • /
    • 2011
  • The plane crack-contact problem for an infinite elastic layer with two symmetric rectangular rigid stamps on its upper and lower surfaces is considered. The elastic layer having an internal crack parallel to its surfaces is subjected to two concentrated loads p on its upper and lower surfaces trough the rigid rectangular stamps and a pair of uniform compressive stress $p_0$ along the crack surface. It is assumed that the contact between the elastic layer and the rigid stamps is frictionless and the effect of the gravity force is neglected. The problem is reduced to a system of singular integral equations in which the derivative of the crack surface displacement and the contact pressures are unknown functions. The system of singular integral equations is solved numerically by making use of an appropriate Gauss-Chebyshev integration formula. Numerical results for stress-intensity factor, critical load factor, $\mathcal{Q}_c$, causing initial closure of the crack tip, the crack surface displacements and the contact stress distribution are presented and shown graphically for various dimensionless quantities.

Experimental Study on Non-contact Type Inspection System for Wing Rib Thickness Measurement (윙립 두께 측정용 비접촉식 검사 시스템에 관한 실험적 연구)

  • Lee, In-Su;Kim, Hae-Ji;Ahn, Myung-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.104-110
    • /
    • 2014
  • This paper presents a non-contact inspection system for automatically measuring the thickness of an aircraft wing rip product. In order to conduct the inspection of the wing rib thickness automatically, a non-contact laser displacement sensor, end-effector, and a robot were selected for use. The non-contact type inspection system was evaluated by measuring the measurement deviation of the rotation direction of a C-type yoke end-effector and the transfer direction of a V-slim end-effector. In addition, the non-contact inspection system for wing rib thickness measurements was validated through thickness measurements of a web, flange, and stiffener.

A New Algorithm of Dynamic Characteristic Analysis for Running Safety of Tilting Vehicle (틸팅차량 주행안전성을 위한 동특성 해석 알고리즘에 관한 연구)

  • Chung Jong-Duk;Chun Hong-Jung;Kim Sun-Cheol;Han Seok-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.131-139
    • /
    • 2005
  • It is very difficult to analyze the dynamic characteristic because tilting vehicle is a very complex system which are connected various mass element with tilting system. To realize and analyze actual phenomenon has restriction that usual commercial software calculates creep force under creep theory about wheel -rail contact mechanism as basic analyzing, and approach about contact point are based on two dimensional non-linear contact theory and simplified Hertzian contact which considers just displacement change on the YZ plain. Therefore, to solve these problems there should be a new approach difference with existing one. In this research, a new algorithm for finding wheel-rail contact position, calculation method of contact force and applied force will be presented.

  • PDF

A Study on the Measurement Characteristics of Cylindrical Type Capacitive Transducers to the Roundness Errors of Rotor for Magnetic Bearing (자기베어링용 로우터의 형상 오차에 대한 실린더형 캐패시턴스 센서의 측정특성에 관한 연구)

  • Lee, S.H.;Jung, S.C.;Han, D.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.23-31
    • /
    • 1995
  • The sending characteristics of the non-contact type displacement transducers can affect the performances of the magnetic bearing systems when they support the rotating shaft. The probe type displacement sensor detects not only the displacement of the rotor at the sensing position but also the surface irregularitis of the rotor such as surface roughnessand roundness errors. If there exist such measuring errors, the magnetic bearing can not apply proper force against the rotor displacements for the detected signal is the input to the magnetic bearing controllers. The cylindrical shape capacitive transducer can detect the rotor displacement by the integral sum of the charges which are formed between the sensor plates and rotor so that it can reduce the detecting errors induced by the surface irregularities of the rotor. By theore- tical analysis, we compared the sensing characteristics of the cylindrical shape capacitive transducers for the rotors that have some sinusoidal irregularities with that of the ideal probe type displacement transducers.

  • PDF