• Title/Summary/Keyword: contact areas

Search Result 494, Processing Time 0.033 seconds

Finite element modeling of contact between an elastic layer and two elastic quarter planes

  • Yaylaci, Murat;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • In this study, a two dimensional model of receding contact problem has been analyzed using finite element method (FEM) based software ANSYS and ABAQUS. For this aim finite element modeling of elastic layer and two homogeneous, isotropic and symmetrical elastic quarter planes pressed by means of a rigid circular punch has been presented. Mass forces and friction are neglected in the solution. Since the problem is examined for the plane state, the thickness along the z-axis direction is taken as a unit. In order to check the accuracy of the present models, the obtained results are compared with the available results of the open literature as well as the results of two software are compared using Root Mean Square Error (RMSE) and good agreements are found. Numerical analyses are performed considering different values of the external load, rigid circular radius, quarter planes span length and material properties. The contact lengths and contact stresses of these values are examined, and their results are presented. Consequently, it is concluded that the considered non-dimensional quantities have noteworthy influence on the contact lengths and contact stress distributions, additionally if FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

Evaluation of proximal contact strength by postural changes

  • Kim, Hee-Sun;Na, Hyun-Joon;Kim, Hee-Jung;Kang, Dong-Wan;Oh, Sang-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.118-123
    • /
    • 2009
  • STATEMENT OF PROBLEM. Proper proximal contact is important for maintaining and stabilizing the dental arch. However, the proximal contact strength (PCS) is not a constant value and can be affected by a variety of factors. PURPOSE. This study examined the influences of postural changes on the posterior PCS. MATERIAL AND METHODS. Twelve adults with a normal occlusion and had not undergone prosthetic treatment or proximal restoration were participated in this study. A metal strip was inserted into the proximal surface and removed at a constant velocity. The contact strength was measured in every contact point between canine to second molar in both arches. The PCSs were obtained initially in the upright position, secondly in the supine position and finally in the upright position again. All measurements were repeated after a 2 hour period. Statistical analysis was carried out using the Friedman test (P < .05). RESULTS. Generally, a decrease in PCS occurred when the posture was changed from the initial upright to supine position, while it increased when the posture was changed from the supine to upright position. A significant change was observed in all areas except for between the canine-first premolar in the maxilla and between the first molar-second molar in the mandible areas. CONCLUSION. The posterior PCS, which dentists generally believe to be a static feature of occlusion, is affected significantly by posture.

The Effect of the Wedge Insole Angle of Supinated Group on Foot Contact Time, Foot Contact Area and Foot Pressure (회외족의 Wedge Insole 각에 따른 보행 시 접지 시간, 접지면적 및 족저압력의 비교)

  • Lee, Hyo-Taek;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.4
    • /
    • pp.508-515
    • /
    • 2010
  • This study was conducted on male college students with supinated foot to measure the foot pressure by having them wear three kinds of wedge insoles ($0^{\circ}$, $3.5^{\circ}$, $7^{\circ}$). Foot contact time, foot contact area, peak pressure and mean pressure were measured using a foot pressure distribution measuring instrument. And the surface of the foot sole was divided into 10 areas. Regarding foot contact time, there was no statistically significant difference by showing $0.69{\pm}0.004$ seconds at $3.5^{\circ}$ and $0.68{\pm}0.006$ seconds at $0^{\circ}$ and $7^{\circ}$. Regarding the foot contact area, it appeared broad in the inside area of the foot according to wedge insole, and there was statistically significant difference in the area 1 of the rear foot(p< .01) and the area 3 of the middle foot(p< .05). The peak pressure by foot area decreased in the outside of the foot according to wedge insole, while increasing in the inside of the foot. Among the areas, there was statistically significant in the area 2 of the rear foot (p< .01) and the area 3 of the middle foot (p< .05). Regarding the mean pressure by foot area, the pressure roughly increased in the inside area of the foot according to wedge insole, while decreasing in the outside of the foot.

Biomechanical Analysis of the Shelf Operation for Dysplastic Hip Joint by Finite Element Analysis (유한요소해석을 이용한 이형성 고관절의 선반형성술에 대한 생체역학 해석)

  • Park W.M.;Kim Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.519-520
    • /
    • 2006
  • The aim of this study was biomechanical analysis of shelf operation in patients with dysplastic hip joint by finite element contact analysis. Two dimensional CT images were used to construct the finite element models to analyze the contact pressure, and the 3D expansion of the Ninomiya's method was used in the calculation of the resultant force in the hip joint. The surgery recovered the center-edge angles to the normal anatomical range and increased the contact areas in two patients. The maximum contact pressures and von-mises stresses were decreased. The present study provides the biomechanical guideline of optimal surgical parameters to maximize the surgical efficiency and the clinical outcomes in dysplastic hip joint using the shelf operation.

  • PDF

Resolution and Image processing Methods of Tomogram and There impact of Computational Velocity Estimation (토모그램의 해상도와 영상처리 기법이 속도예측에 미치는 영향)

  • Lee, Min-Hui;Song, Da-Hee;Keehm, Young-Seuk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.147-154
    • /
    • 2009
  • Physical properties of rocks, such as velocity, are strongly dependant on detailed pore structures, and recently, pore micro-structures by X-ray tomography techniques have been used to simulate and understand the physical properties. However, the smoothing effect during the tomographic reconstruction procedure often causes an artifact - overestimating the contact areas between grains. The pore nodes near a grain contact are affected by neighboring grain nodes, and are classified into grain nodes. By this artifact, the pore structure has higher contact areas between grains and thus higher velocity estimation than the true one. To reduce this artifact, we tried two image processing techniques - sharpening filter and neural network classification. Both methods gave noticeable improvement on contact areas between grains visually; however, the estimated velocities showed only incremental improvement. We then tried to change the resolutions of tomogram and quantify its impact on velocity estimation. The estimated velocity from the tomogram with higher spatial resolution was improved significantly, and with around 2 micron spatial resolution, the calculated velocity was very close to the lab measurement. In conclusion, the resolution of pore micro-structure is the most important parameter for accurate estimation of velocity using pore-scale simulation techniques. Also the estimation can be incrementally improved if combined with image processing techniques during the pore-grain classification.

  • PDF

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.

Artificial neural network calculations for a receding contact problem

  • Yaylaci, Ecren Uzun;Yaylaci, Murat;Olmez, Hasan;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.551-563
    • /
    • 2020
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for the maximum contact pressures and contact areas of a contact problem. Firstly, the problem is formulated and solved theoretically by using Theory of Elasticity and Integral Transform Technique. Secondly, the contact problem has been extended based on the ANN. The multilayer perceptron (MLP) with three-layer was used to calculate the contact distances. External load, distance between the two quarter planes, layer heights and material properties were created by giving examples of different values were used at the training and test stages of ANN. Program code was rewritten in C++. Different types of network structures were used in the training process. The accuracy of the trained neural networks for the case was tested using 173 new data which were generated via theoretical solutions so as to determine the best network model. As a result, minimum deviation value (difference between theoretical and C++ ANN results) of was obtained for the network model. Theoretical results were compared with artificial neural network results and well agreements between them were achieved.

Periocular Allergic Contact Dermatitis Associated with the Use of Ofloxacin Ophthalmic Ointment: A Case Report (Ofloxacin 안연고에 의해 유발된 눈주위 알레르기접촉피부염)

  • Jo, Jeong Won;Jeong, Hae Bong;Shin, Young Bin;Kang, Kee Ryeon;Kim, Chi Yeon
    • Korean journal of dermatology
    • /
    • v.56 no.10
    • /
    • pp.624-627
    • /
    • 2018
  • Allergic contact dermatitis is an inflammatory condition associated with periorbital erythema, edema, and pruritus. The periorbital skin is relatively thin compared with the skin over other facial areas; therefore, it is vulnerable to allergen penetration and may show a variety of cutaneous manifestations. Recently, vision enhancement surgery is a widely performed procedure, and the prevalence of senile cataract and glaucoma is increasing. The prevalence of periocular allergic contact dermatitis is increasing secondary to the growing use of topical ophthalmic medications. Several studies in Korea have reported periocular allergic contact dermatitis secondary to the use of topical ophthalmic medications including latanoprost ($Latano^{(R)}$), fluorometholone ($Tolon^{(R)}$), polymyxin B ($Terramycin^{(R)}$), atropine sulfate ($Atropine^{(R)}$), neomycin sulfate ($Cambison^{(R)}$), and befunolol hydrochloride ($Bentos^{(R)}$), among others. However, ofloxacin ($Effexin^{(R)})$-induced allergic contact dermatitis has not been reported in the domestic and/or foreign literature. We report a case of periocular allergic contact dermatitis secondary to the use of ofloxacin ophthalmic ointment.

Optimal area for rectangular isolated footings considering that contact surface works partially to compression

  • Vela-Moreno, Victor Bonifacio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Martinez-Aguilar, Carmela
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.561-573
    • /
    • 2022
  • This paper presents a new model to obtain the minimum area of the contact surface for rectangular isolated footings, considering that the contact surface works partially to compression (a part of the contact surface of the footing is subjected to compression and the other is not in compression or tension). The methodology is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My". This document presents the simplified and precise equations of the four possible cases of footing subjected to uniaxial bending and five possible cases of footing subjected to biaxial bending. The current model considers the contact area of the footing that works totally in compression, and other models consider the contact area that works partially under compression and these are developed by very complex iterative processes. Numerical examples are presented to obtain the minimum area of rectangular footings under an axial load and moments in two directions, and the results are compared with those of other authors. The results show that the new model presents smaller areas than the other authors presented.