• Title/Summary/Keyword: contact angle test

Search Result 352, Processing Time 0.022 seconds

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF

Effects of Oxygen Plasma Treatment on the Wettability of Polypropylene Fabrics

  • Kwon, Young Ah
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.456-461
    • /
    • 2014
  • The objective of this study is to give PP(polypropylene) fabric a good affinity for water. Oxygen plasma was treated to PP fabrics in a commercial glow discharge reactor with different RF power, discharge pressure, and reaction time. The PP fiber surfaces were characterized by the measurement of contact angle and ESCA. A JEOL scanning electron microscope was used to observe the surface morphology of fibers. The spontaneous water uptake amount of PP fabrics was determined by the demand wettability test. To determine the effect of aging on the surface properties of $O_2$ plasma treated PP, all the above measurements of the samples were carried out after 1, 7, 30, 60, and 150 days. The results are as follows. The PP fiber surfaces treated by $O_2$ plasma treatment have a chemical composition that consisted of various oxygen containing polar groups. Consequently, the contact angles of the treated PP fibers decreased, which improved the water uptake rate of PP fabrics. Surface roughness of the treated PP affected the fabric wettabiity as well. Wettability of the treated PP decreased and leveled off with aging. The $O_2$ plasma treatment is a simple and effective method to increase the water uptake rate of PP fabrics.

Characteristics of Calcined Clay by Carburization Treatment (소성 점토의 침탄 처리에 따른 물성 변화에 관한 연구)

  • Kim, Sang-Myung;Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.63-68
    • /
    • 2008
  • Traditionally and generally used calcined clay was carburized, and its characteristics were studied. Carburization treatment was performed by the thermally decomposed carbon and the deposit carbon which occur in a so called 'Boudouard reaction $(2CO{\rightarrow}CO_2+C)'$ at fuel combustion process in a closed-type furnace. The color of the carburized calcine clay changed from yellow to black, and the carbon component revealed as crystalline graphite by the X-ray diffraction test. The weight of the carburized calcine clay decreased to about 4 wt.% by the 1st heating to $1400^{\circ}C$ in air but it does not decreased by the 2nd heating of the same conditions. By the carburization treatment, the water absorption changed from 13 wt.% to 6 wt.%, and the contact angle for water drop changed, too, from 0 to $87^{\circ}$ which was tested by the photograph of one minute after a water drop contact. It means the carburized calcine clay does not absorb water drop so it has a hydrophobic characteristic.

Development of Non-Contact Conveyor for Clean Process by Applying Magnet Gears (비접촉형 마그넷기어를 적용한 클린 반송장치의 개발)

  • Oh, Young-Jin;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3633-3640
    • /
    • 2010
  • For a development of non-contact magnet gear which is magnetized as a helical shape, a method of 3-dimensional FEM analysis is used. An elementary technique required for magnetic property analysis and parts design about magnet gear is ensured. In order to test a performance of clean conveyor and turning device which is composed with magnet gear, a clean class 10 environment booth is used for a trial test. It is verified that the magnet conveyor can be acceptable under a condition of clean class 10 by a result of trial test about transfer speed, maximum torque permission, cleanness, maximum transfer weight, existence of hunting and degree of noise.

Measurement of Surface Energy and Intrinsic Work of Adhesion Using Johnson-Kendall-Roberts (JKR) Technique (Johnson-Kendall-Roberts (JKR) 기법을 이용한 표면 에너지 및 고유접착에너지 측정)

  • Lee, Dae Ho;Lee, Dong Yun;Cho, Kilwon
    • Journal of Adhesion and Interface
    • /
    • v.5 no.3
    • /
    • pp.18-22
    • /
    • 2004
  • By using JKR technique, the surface energy of a solid material and the intrinsic work of adhesion between two materials were determined. JKR technique is based on the contact mechanics, and is now being accepted as a new method which can overcome the demerits of the existing test methods such as contact angle measurement and other adhesion test. In this study, the surface energy of polydimethylsiloxane (PDMS) is measured by JKR method and the experimental results and the applicability of JKR apparatus were discussed.

  • PDF

Effect of Aquatic Walking Exercise on Gait and Balance Parameters of Elderly Women (수중걷기운동이 여성노인의 보행 및 평형능력에 미치는 영향)

  • Kang, Ki-Joo;Lee, Joong-Sook;Yang, Jeong-Ok;Park, Joon-Sung;Han, Ki-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.73-81
    • /
    • 2020
  • Objective: The purpose of this study is to analyze the effects of aquatic walking exercise on gait and balance parameters of elderly women. Method: 15 elderly people were recruited for this study (age: 73.20±5.19 yrs, height: 153.87±3.36 cm, mass: 60.33±5.73 kg). All variables were measured using Gaitview AFA-50. The variables were the heel contact time ratio, gait angle, and M/P change ratio for gait patterns and ENV, REC, RMS, Total Length, TLC, Sway velocity, and Length/ENV for balance abilities. A paired t-test and the Wilcoxon signed-rank test were carried out to verify the differences in the test scores after participating in the water walking program. The significance level for all statistical analyses was set to α=.05. Results: As for the changes in their walking function after the exercise, heel contact time ratio (p<.01) showed a statistical significance, while gait angle and M/P change ratio did not reveal statistically significant differences. In the test of balance ability on both feet and with eyes opened, statistical significance was found in ENV, REC, RMS, TLC (p<.01), and sway velocity (p<.05), while the test with eyes closed showed statistical significance in length/ENV as well as ENV, REC, RMS, sway velocity (p<.01) TLC, and total length (p<.05). As for the single-leg stance balance ability, ENV and REC revealed statistically significant differences. Conclusion: These results show that water walking is effective for improving the function of the ankle flexor muscles, providing stability to the ankle joint during walking and helping efficient walk. In addition, it is also expected to help prevent falls due to loss of balance by improving the stability of lower extremity muscles and trunk.

Development and characterization of graphite reinforced conductive polymer composites for PEMFC bipolar plates (고분자전해질 연료전지용 흑연계 복합소재 분리판 개발)

  • Heo Seongil;Yun Jincheol;Oh Kyeongseok;Han Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.248-251
    • /
    • 2005
  • Graphite reinforced conductive polymer composites for PEMFC bipolar plates were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. In this study, conductive polymer composites with high filler $loadings(>60wt.\%)$ were manufactured to accomplish high electrical conductivity above 100S/cm. The level of compaction is important because graphite powder increase electrical conductivity of composites by direct physical contact between particles. The optimum molding pressure according to filler was proposed experimentally. Various tests(electrical conductivity, flexural strength, compressive strength, leach test, etc) were carried out to verify the performance of fabricated composites for PEMFC bipolar plates. Fabricated composites have good electrical conductivity and mechanical strength. The results of leach test and contact angle measurement showed similar characteristics compared with commercial bipolar plates.

  • PDF

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.

An Experimental Study on the Performance Evaluation Method of Padder Roll by Hydraulic Multi Cell with Acceleration Test (유압제어식 멀티셀 패더롤의 가속시험을 통한 성능평가 기법 연구)

  • Cho, Kyung Chul;Lee, Eun Ha;Park, Si Woo;Kim, Soo Youn
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • The hydraulic control valve, used in the CPB (cold-pad-Batch) cold dyeing system, passes through a pressurized material that absorbs the dye. The hydraulic control of the hydraulic control panel shall be driven in a uniform and precisely controlled manner, as it interferes directly with the dyschromatism. In this study, an acceleration test model was employed to verify the durability of the hydraulic control of the hydraulic control panel, which was manufactured by the scenic model, and the pre-roll angle was analyzed before the performance of acceleration test. Based on the change in the amount of deformation of the padder roll the durability of the padder roll was analyzed along with verification of the durability of the skin and the rubber coating in contact with the fabric. Furthermore, the accelerated test method used for hydraulic controlled multi-cell padder rolls was verified.

Multi-axial Stress Analysis and Experimental Validation to Estimate of the Durability Performance of the Automotive Wheel (자동차용 휠의 내구성능 예측을 위한 복합축 응력해석 및 실험적 검증)

  • Jung, Sung-Pil;Chung, Won-Sun;Park, Tae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.875-882
    • /
    • 2011
  • In this paper, the finite element analysis model of the mult-axial wheel durability test configuration is created using SAMCEF. Mooney-Rivlin 2nd model is applied to the tire model, and the variation of the air pressure inside the tire is considered. Vertical load, lateral load and camber angle are applied to the simulation model. The tire rotates because of the friction contact with a drum, and reaches its maximum speed of 60 km/h. The dynamics stress results of the simulation and experiment are compared, and the reliability of the simulation model is verified.