• Title/Summary/Keyword: consumption, Rate of heat release

Search Result 64, Processing Time 0.034 seconds

Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • Environmental pollution and alternative energy has attracted increasing interest. The use of diesel engines is expected to increase in the world owing to their fuel economy. The problem of air pollution emissions from marine engines is causing a major concern in many areas. An alternative fuel was introduced as an environmentally friendly fuel to reduce the toxic emissions from conventional fossil fuels. Biodiesel fuel, which is a renewable energy is highlighted as environmentally friendly energy. This energy can be operated in regular diesel engines when it is blended with invariable ratios without making changes. In this study, a bio-diesel fuel was produced from waste cooking oil and applied to a marine diesel engine to examine the effects on the characteristics of combustion. Waste cooking oil contains a high cetane number and viscosity component, a low carbon and oxygen content. As a result, the brake specific fuel consumption was increased, and the cylinder pressure, rate pressure rise and rate of heat release were decreased.

A study on the vehicle fire property using the large scale calorimeter (대형칼로리미터를 이용한 차량 화재 특성에 관한 연구)

  • Yoo, Yong-Ho;Kim, Heung-Youl;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2007
  • The reduced scale fire test provides basic data but it is not enough to analysis real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore we have developed the large scale calorimeter in order to the real scale fire test. This advanced large scale calorimeter used for physical properties such as a heat release rate, based upon consumption of $O_2$ method. Using this large scale calorimeter, we cameo out the real scale vehicle fire test in order to evaluation for heat release rate. We obtained the calculated result for HRR $2.3{\sim}3.4\;MW$ and this result is very similar to the PIARC candidate HRR. It is approve that this facility has the reliability and it is capable of applying to the advance fire research in the future.

  • PDF

An Experimental Study on Effects of Cooling Airflow rate on the Automotive Cooling Performance (냉각공기량이 자동차 냉각성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Jin-Hyun;Lee, Hae-Chul;Park, Jong-Nam;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.950-954
    • /
    • 2001
  • Gasoline engine manufacturers are currently considering designs that will result in low combustion air temperature for improvement of fuel consumption and emission levels. There are a variety of cooling systems that can be used to accomplish this goal. Coolong is therefore normally achieved through a balance of ram and fan action. This paper studies the various systems and compare the cooling performance for several conditions, based on a automotive engine. An experimental analysis was developed to predict the interaction of the fan system and the heat exchangers of the engine cooling system. The local temperature induced by the fan on the cooling system is measured. These experimental result were accomplished using air flow management techniques.

  • PDF

An Experimental Study on the Effects of the Automotive Cooling Performance by Cooling Airflow rate (II) (냉각 공기량이 자동차 냉각성능에 미치는 영향에 관한 실험적 연구(II))

  • Kim, J.H.;Lee, H.C.;Lee, M.H.;Park, J.N.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.940-945
    • /
    • 2001
  • Gasoline engine manufacturers are currently considering designs that will result in low combustion air temperature for improvement of fuel consumption and emission levels. There are a variety of cooling systems that can be used to accomplish this goal. Cooling is therefore normally achieved through a balance of ram and fan action. This paper studies the various systems and compare the cooling performance for several conditions, based on a automotive engine. An experimental analysis was developed to predict the interaction of the fan system and the heat exchangers of the engine cooling system. The local temperature induced by the fan on the cooling system is measured. These experimental result were accomplished using airflow management techniques.

  • PDF

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

Performance Simulation for the Variation of Fuel Injection Nozzle Configurations in Medium Speed Diesel Engine (중형 디젤 엔진의 연료분사노즐 형상에 따른 성능 해석 연구)

  • Kim, Ki-Doo;Youn, Wook-Hyun;Kim, Byong-Seok;Ha, Ji-Soo;Ahn, Kwang-Hean;Kim, Ju-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.662-668
    • /
    • 2006
  • The effects of fuel injection nozzle hole on the NOx emission and fuel oil consumption of medium speed diesel engine HYUNDAI HiMSEN 6H21/32 engine are investigated by engine performance simulation. The results of performance simulation are verified by experimental results of NOx omission fuel oil consumption, cylinder pressure, and heat release rate according to the variation of the number of fuel injection nozzle hole and engine load. The performance simulations are also carried out to optimize the fuel injection nozzle of 6H21/32 engine in respect to the NOx emission and fuel oil consumption. The engine performance measurements are performed to verify the results of performance simulation and to investigate the effects of fuel injection nozzle on engine performance. The results of measurement indicate that significant NOx reduction can be achieved with minimum deterioration in fuel oil consumption by optimizing the geometry of fuel injection nozzle on 6H21/32 engine.

Comparative Analysis on Combustion Characteristics of Diesel Oil and Biodiesel Blends in Dl Diesel Engine (Using Soybean Oil) (직접분사식 디젤기관에서 디젤유와 바이오디젤 혼합유의 연소특성에 대한 비교 연구 (대두유를 중심으로))

  • Lim, J.K.;Choi, S.Y.;Cho, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.29-34
    • /
    • 2009
  • Recently, we have a lot interest in a sudden rise of oil prices and a change weather for the earth warmming, so, development of new alternative fuels need in order to spare fossil fuel and reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the combustion characteristics between neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were tested using four stroke, direct injection diesel engine, especially this biodiesel was produced from soybean oil at our laboratory. This analysis showed that cylinder pressures, the rate of pressure rises and the rate of heat releases were decreased as the blending ratios of biodiesel to diesel oil increased because of lower heating value of biodiesel in spite of increased oxygen content in biodiesel.

  • PDF

A Study on Performance Analysis of The Closed Cycle System Using the Diesel Engine (디젤엔진을 이용한 폐회로 시스템의 성능해석에 관한 연구)

  • 박신배;이효근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.446-453
    • /
    • 2000
  • The closed cycle diesel system is operated in closed circuit system where there is non air breathing with working fluid consisted of the combination of oxygen, argon and recycled exhaust gas for obtaining underwater or underground power sources. this study has been carried out to analysis the performance of closed cycle system by means of investigation on the combustion characteristics of diesel engine MTU8V183TE52 operating in open, semi-closed, and closed cycle modes. The combustion in closed mode starts a little bit earlier than in open cycle mode. The oxygen concentration and fuel consumption at 240kW closed cycle running are 21∼24% by volume and 77∼79kg/h, respectively. The maximum cylinder pressure and ignition delay time are investigated 110bar and 8.9degree. Also, The combustion simulation program has been studied to predict whether or not combustion. The results from numerical prediction for the basic, cylinder averaged quantities such as the cylinder pressure and the heat release showed excellent with the experimental data.

  • PDF

Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition (수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향)

  • Jeon, Jeeyeon;Park, Hyeonwook;Bae, Choonsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF