• 제목/요약/키워드: construction stresses

검색결과 510건 처리시간 0.027초

건설업 관리직의 직무스트레스 평가에 관한 연구 (A Study on the Evaluation of Job Stresses for Managers in the Construction Industry)

  • 이도영;김완진;이영섭
    • 한국안전학회지
    • /
    • 제22권3호
    • /
    • pp.39-44
    • /
    • 2007
  • Job stresses are realized as harmful factors affected workers' mental health. Job stresses can be defined as the physical and emotional responses that are occurred when the job requirements should be beyond the workers' abilities, followed with health problems and even work-related injuries. Job stresses could be resulted from the work environment and conditions related with workers' personality. This study is conducted to evaluate the job stresses for managers in the construction industry, by the questionaires which collected 302(75.5%) among 400 ones. The evaluation items are the levels of job stresses and stressors as well as the relationship between the variables. The controls should be recommended for physical and mental health.

Investigation on effect of neutron irradiation on welding residual stresses in core shroud of pressurized water reactor

  • Jong-Sung Kim;Young-Chan Kim;Wan Yoo
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.80-99
    • /
    • 2023
  • This paper presents the results of investigating the change in welding residual stresses of the core shroud, which is one of subcomponents in reactor vessel internals, performing finite element analysis. First, the welding residual stresses of the core shroud were calculated by applying the heat conduction based lumped pass technique and finite element elastic-plastic stress analysis. Second, the temperature distribution of the core shroud during the normal operation was calculated by performing finite element temperature analysis considering gamma heating. Third, through the finite element viscoelastic-plastic stress analysis using the calculated temperature distribution and setting the calculated residual stresses as the initial stress state, the variation of the welding residual stresses was derived according to repeating the normal operation. In the viscoelastic-plastic stress analysis, the effects of neutron irradiation on mechanical properties during the cyclic normal operations were considered by using the previously developed user subroutines for the irradiation agings such as irradiation hardening/embrittlement, irradiation-induced creep, and void swelling. Finally, the effect of neutron irradiation on the welding residual stresses was analysed for each irradiation aging. As a result, it is found that as the normal operation is repeated, the welding residual stresses decrease and show insignificant magnitudes after the 10th refueling cycle. In addition, the irradiation-induced creep/void swelling has significant mitigation effect on the residual stresses whereas the irradiation hardening/embrittlement has no effect on those.

주형과 상판과의 상호작용이 단순 사교의 동적거동에 미치는 영향 (Effects of Interactions between the Concrete Deck and Steel Girders on the Dynamic Behavior of Simply Supported Skew Bridges)

  • 문성권
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.593-604
    • /
    • 2007
  • 합성형 사교는 비합성형 사교에 비해 역학적 측면에서 큰 장점을 지니고 있는 것이 사실이지만 사각이 심한 사교들의 경우 합성형 사교에 매우 큰 상판응력이 유발될 가능성이 있어 종종 이들 사교들에 대한 비합성형 설계가 검토되어지곤 한다. 본 연구에서는 동적해석이 가능한 비합성형 사교의 해석모델을 제안하고 이 해석모델들을 이용하여 사교들에 대한 비합성형의 적용 타당성을 검토하였다. 또한 주형과 상판과의 세 가지 상호작용(합성작용, 부분합성작용, 비합성작용)이 단순 판형사교들의 동적특성과 동적거동에 미치는 영향을 조사하였다. 주형간격, 사각, 상판 종횡비를 매개변수로 총 27개의 판형 사교들에 대한 일련의 연구를 수행하였다. 상판과 주형 경계면에서의 미끄러짐은 고유진동주기가 길어지는 현상을 유발하여 사교의 교축직각방향에 작용하는 전체밑면전단력의 크기를 감소시킬 수도 있지만 모드형장과 강성분포에 큰 영향을 미쳐 바람직하지 않은 사교 거동을 유발할 수도 있다. 부분합성작용의 최소 규정에 따라 설치된 전단연결재는 주형응력과 상판응력을 감소시키는 효과가 있다. 즉, 몇몇 사교의 경우를 제외하고는 전반적으로 부분합성형으로부터 구한 주형응력과 상판응력의 크기는 합성형 사교로부터 구한 관련 응력들의 크기와 유사하거나 약간 크게 나타난다.

Effect of construction sequence on three-arch tunnel behavior-Numerical investigation

  • Yoo, C.;Choi, J.
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.911-917
    • /
    • 2018
  • This paper concerns a numerical investigation on the effect of construction sequence on three-arch (3-Arch) tunnel behavior. A three-arch tunnel section adopted in a railway tunnel construction site was considered in this study. A calibrated 3D finite element model was used to conduct a parametric study on a variety of construction scenarios. The results of analyses were examined in terms of tunnel and ground surface settlements, shotcrete lining stresses, loads and stresses developed in center column in relation to the tunnel construction sequence. In particular, the effect of the side tunnel construction sequence on the structural performance of the center structure was fully examined. The results indicated that the load, thus stress, in the center structure can be smaller when excavating two side tunnels from opposite direction than excavating in the same direction. Also revealed was that no face lagging distance between the two side tunnels impose less ground load to the center structure. Fundamental governing mechanism of three-arch tunnel behavior is also discussed based on the results.

인공균열 주위의 변형과 터널 숏크리트 라이닝 응력간의 상관관계에 대한 수치해석적 검토 (Numerical approach on relationship between deformation of artificial crack and stress acting on tunnel shotcrete lining)

  • 신휴성;권영철;배규진;김경신;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.64-71
    • /
    • 2009
  • The stresses acting on shotcrete lining of tunnel have been measured virtually by monitoring instruments installed during construction. However, the malfunction of instrument and the lack of consistency of signal have always been controversial, but re-installation of instrument after construction of tunnel lining is practically impossible. Therefore, authors have carried out the study to develop a new technique for estimating the stress acting on shotcrete lining during and after construction. In the technique, stresses of shotcrete lining can be estimate by the measurement of deformation of free face. Therefore, the relationships between the stresses of shotcrete lining and deformation of free surface are indispensable factor. In this paper, the parametric study using 2D FEM analysis was carried out to estimate the relationships between the stress level acting on the tunnel shotcrete lining and the deformation near the free face (e.g. artificial crack in this study). The distribution of stresses of shotcrete lining is also investigated in this study as the preliminary investigation for the large-scale tunnel lining test and detailed 3D FEM analysis.

  • PDF

식생매트 허용 소류력 평가를 위한 실규모 실험 연구 (A Real Scale Experimental Study for Evaluation of Permissible Shear Stresses on Vegetation Mats)

  • 이두한;김동희;김명환;이동섭
    • 한국산학기술학회논문지
    • /
    • 제13권12호
    • /
    • pp.6151-6158
    • /
    • 2012
  • 친환경 하천사업의 활성화로 식생매트의 사용은 증가하고 있으나 수리적 안정성에 대한 평가는 미흡한 실정이다. 본 연구는 호안용 식생매트 제품의 객관적인 수리안정성 시험 기법 개발을 위해 수행하였다. 이를 위해서 식생매트 2종에 대한 실규모 실험을 수행하여 수리량을 측정하고 분석하여 작용 소류력을 계산하였다. 1차원 부정류 모형을 이용하여 최적 조도계수를 결정하고 작용 소류력을 계산하였다. 각 유량의 시험 후에는 매트 표면 및 기반층의 변동 여부를 기록하여 평가하였으며 이에 따라 매트표면의 손상 유형 3가지 및 기반층의 손상 유형 2가지를 제시하였다. 본 연구에서는 식생매트의 표면 변동이 있더라도 하부 기반층의 유실이 발생하지 않는 경우에는 안정한 상태로 제안하였다. 이에 따라 실험체 2종의 허용소류력을 평가하였으며 철망으로 보강된 식생매트가 허용 소류력 측면에서 효과가 있는 것을 확인할 수 있었다.

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

시공단계 및 계절별 온도영향을 고려한 롤러다짐콘크리트댐의 온도응력 해석 (Thermal Stresses of Roller Compacted Concrete Dam Considering Construction Sequence and Seasonal Temperature)

  • 차수원;장봉석
    • 대한토목학회논문집
    • /
    • 제28권6A호
    • /
    • pp.881-891
    • /
    • 2008
  • 국내 최초로 시공되는 롤러다짐 콘크리트 댐(RCD)의 온도균열 관리방안 수립하기 위하여 RCD 공법의 시공특성인 층(layer) 타설 방식을 고려하여, 댐체의 온도분포 및 온도응력 해석을 수행하였다. RCD 공법은 수 백 개의 시공단계로 구성되어 있고, 실제 타설 층을 시공단계로 해석하는 것과 6층을 한 시공단계로 시공하는 경우를 비교하여 해석 단계의 단순화 가능성을 검토하였으며, 단위시멘트량이 $130kg/m^3$ 내외로 발열량이 매우 작은 RCD 배합의 경우에도 여름철에는 온도균열 지수가 1.0 이하로 나타나 온도관리의 필요성을 확인하였다.

건조수축 및 온도영향에 대한 건조수축대의 효과 연구 (A Study on the Effect of the Shrinkage Strip on Shrinkage and Thermal Change of Concrete)

  • 김록배;김욱종;이도범;이운세
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.251-256
    • /
    • 2001
  • Shrinkage during the curing and drying of concrete is unavoidable and results in many cracks. Shrinkage strips reduce effectively shrinkage stresses and minimize shrinkage cracks by being left open for a certain time during construction allow a significant part of the shrinkage to occur without inducing stresses. This study verifies the effectiveness of shrinkage strips and provides the guide for construction of such strips.

  • PDF