• Title/Summary/Keyword: construction standards

Search Result 1,617, Processing Time 0.03 seconds

Development of optimal cross-section design methods for bored utility tunnels: case study of overseas typical cross-sections and design criteria (터널식 공동구 최적단면 설계기술 개발: 해외 표준단면 사례 및 설계기준 분석)

  • Park, Kwang-Joon;Yun, Kyoung-Yeol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1073-1090
    • /
    • 2018
  • Since the domestic utility tunnels were built mainly in the development project of the new city, they are all in the form of cut-and-cover box tunnel. But, in the case of overseas construction of utility tunnels for existing urban areas, the bored tunnel types are mainly adopted. It is reasonable to install bored tunnels in a downtown area because it is difficult to block the roads or install bypass roads due to heavy traffic and civil complaints. In order to activate the utility tunnels in bored type, it is necessary to secure optimized cross-sectional design technology considering the optimal supplying capacity and mutual influencing factors (Thermal Interference, electrolytic corrosion, efficiency of the maintenance, etc.) of utilities (power cables, telecommunication cables, water pipes, etc.). The optimal cross-section design method for bored utility tunnels is ultimately to derive the optimal arrangement technique for the utilities. In order to develop the design methods, firstly, the cases of tunnel cross-section (Shield TBM, Conventional Tunneling) in overseas shall be investigated to analyze the characteristics of the installation of utilities in the section and installation of auxiliary facilities, It is necessary to sort out and analyze the criteria related to the inner cross-section design (arrangement) presented in the standards and guidelines.

Engineering Characteristics of CLSM Using Bottom Ash and Eco-friendly Soil Binder (친환경 고결제와 저회를 활용한 유동성 복토재의 공학적특성)

  • Park, Giho;Kim, Taeyeon;Lee, Yongsoo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • In general, pipe laying works are performed by constructing underground facilities such as pipes and then refilling the rest of the area with sand or soil. However, there are many problems in the compaction process such as difficulties in tampering around the underground facility and low compaction efficiency. Such problems cause deformation and damage to the underground pipes during refilling work and ultimately cause road sinks. Construction methods using CLSM are one of the typical methods to solve these issues, and recently, studies on CLSM using coal ash, which has similar engineering properties as sand, have been actively performed to protect environment and recycle resources. While many studies have been conducted to recycle fly ash in many ways, the demand for recycling bottom ash is increasing as most of the bottom ash is not recycled and reclaimed at ash disposal sites. Therefore, in order to find bottom ash applications using eco-friendly soil binders that are environmentally beneficial and conform with CLSM standards, this study investigated flow characteristics and strength change characteristics of eco-friendly soil binders, weathered granite soil, a typical site-generated soil, bottom ash, and fly ash mixed soil and evaluated the soil pollution to present CLSM application methods using bottom ash.

Effect of limestone addition on mechanical properties of ceramic tiles with fly ash (플라이애시가 첨가된 도자타일 성능에 석회석 함량이 미치는 효과)

  • Lee, Jin-Wook;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.256-262
    • /
    • 2018
  • A great amount of fly ash, which is a waste from a thermal power plant, has not been appropriately recycled until now. Landfill of flay ash causes environmental pollution and enormous economic costs. In this study, manufacturing of architectural ceramic tile was investigated replacing fly ash with clay raw material. The properties of porcelain tile was analyzed after manufacturing porcelain tile with mineral based glaze and fast firing process. In particular, the effect of the fly ash addition on the properties of ceramic tile was investigated by increasing the amount of limestone addition. Porcelain tile with fly ash showed excellent bending strength, water absorption, warping and abrasion resistance. However, a significant decrease in durability was observed through the autoclave test. Addition of limestone increased the water absorption, twisting and hydration expansion of the ceramic tile, but it was confirmed that the durability of the ceramic tile with fly ash was greatly improved. In conclusion, recycled architectural ceramic tiles, which can meet domestic construction standards, could be manufactured with the addition of fly ash and limestone.

A Study on Performance of Steel Monocell Expansion Joints (강재형 모노셀 신축이음장치 성능 연구)

  • Kim, Yong-Hoon;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2019
  • Studies have been made on performance evaluation of expansion joint systems for an ordinary highway or road bridge. However little study has been made for runway connection bridges at airports. A study on performance evaluated from computer code analysis and shrinkage, extension, and compression repetition tests based on KS F 4425 is conducted to a newly developed expansion joint system which has been installed in a runway connection bridge at Incheon Airport Extension 2 Construction Site. The MIDAS computer code is used to analyze the performance before the manufacture of the mock-up of expansion joint system on the basis of design requirements. Tests based on the KS F 4425 of 2001 year-version are conducted for the mock-up. Domestic codes and standards to validate the performance of the expansion joint system in a connection bridge have been developed for a vehicle. However the expansion joint system tested in this study is installed in a runway connection bridge for an aircraft. Conservatively the heaviest one among airplanes departing and landing at Incheon Airport is assumed level-F $468.4kN/m^2$ and adopted for the tests and analyses in this study. KS F 4425 method is selected for the shrinkage, extension, and compression repetition tests. No remarkable problem was observed for the 2,500-cycle shrinkage and extension and two million-cycle repeatition load tests. The results of this study are expected to contribute to establishment of code and standard for the performance validation of an expansion joint system installed in a runway connection bridge for an aircraft by providing performance test results and computer analysis results based on finite element methods.

Nonlinear Impact Analysis for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙단면 에코필라 사방댐의 비선형 충돌해석)

  • Kim, Hyun-Gi;Kim, Bum-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.430-439
    • /
    • 2019
  • In this study, a nonlinear impact analysis was performed to evaluate the safety and damage of an eco-pillar debris barrier with a hollow cross-section, which was proposed to improve constructability and economic efficiency. The construction of concrete eco-pillar debris barriers has increased recently. However, there are no design standards concerning debris barriers in Korea, and it is difficult to find a study on performance evaluations in extreme environments. Thus, an analysis of an eco-pillar debris barrier was done using the rock impact speed, which was estimated from the debris flow velocity. The diameters of rocks were determined by ETAG 27. The impact position, angles, and rock diameter were considered as variables. A concrete nonlinear material model was applied, and the estimation of damage was done by ABAQUS software. As a result, the damage ratio was found to be less than 1.0 at rock diameters of 0.3 m and 0.5 m, but it was 1.39 when the diameter was 0.7 m. This study could be used as basic data on impact force in the design of the cross section of an eco-pillar debris barrier.

Design and Implementation of Modbus Communications for Smart Factory PLC Data Collection (스마트팩토리 PLC 데이터 수집을 위한 Modbus 통신 설계 및 구현)

  • Han, Jin-Seok;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.77-87
    • /
    • 2021
  • Smart Factory refers to a factory that can be controlled by itself with an intelligent factory that improves productivity, quality and customer satisfaction by combining the entire process of manufacturing and production with digital automation solutions. The manufacturing industry around the world is rapidly changing, with Germany, Europe, and the United States at the center. In order to cope with such changes, the Korean government is also implementing a policy to spread the supply of smart factories for small and medium-sized companies, and related ministries and agencies such as the Ministry of Commerce, Industry and Energy, the Ministry of SMEs and Venture Business, the Korea Institute of Technology and Information Promotion, and local technoparks, as well as large companies such as Samsung, SK and LG are actively investing in smart manufacturing projects to support smart factories[1]. Factory Automation (FA) construction has many issues regarding the connection of heterogeneous equipment. The most difficult aspect of configuring various communications from various equipment is the reason. Although it may not be known if there are standards or products made up of the same company, it is not easy to build equipment that is old, up-to-date, and different use environments through a series of communications. To solve this problem, we would like to propose a method of communication using Modbus, one of FieldBus, which is one of the many industrial devices of PLC, a representative facility control system, and is used as a communication standard.

A Statistical Analysis of Results of Detailed Inspections on Aged Concrete Erosion Control Dams in Gyeongsangbuk-do (경상북도 지역 노후 콘크리트사방댐 정밀점검 결과의 통계적 분석)

  • Kim, Jeongsig;Kim, Dongyeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.276-286
    • /
    • 2022
  • We carried out this study to provide basic data necessary to establish a management plan for concrete erosion control dams in the future by analyzing results of detailed inspections of aged dams conducted in accordance with 「Guidelines for the Maintenance of the Erosion Control Facility」. We analyzed the results of a detailed inspection of 54 concrete erosion control dams which had been built over 20 years previously, located in private forests of Gyeongsangbuk-do using statistical methods. Having conducted exterior defect investigations, we found 18 dams (33.4%) in need of repair or follow-up measures and 15 dams in which the overall grade was changed due to investigator's corrections; we therefore considered that standardization of related standards and indicators would be necessary. After conducting concrete compression strength tests, we found 19 dams (35.2%) to be below the standard value of 21 MPa, and in particular, we included, in grade A, eight dams which we judged to be in good condition as a result of the exterior defect inspection. There was little clear correlation between the total score and the compressive strength of concrete, but there was a statistically significant difference in the compressive strength by overall grade. After analyzing the changes in the characteristics of the erosion control dams according to the elapsed years after construction, we detected no particular trend in the changes of total score and compressive strength over time. However, the cumulative ratio of the dams that required repair and follow-up measures and the dams below the compression strength standard had a strong positive linear relationship over time, suggesting that it would be possible to identify the aging characteristics of concrete erosion control dams.

A study on The Improvement Plan of The Restricted Development Zone Monitoring system (개발제한구역 모니터링체계 개선방안 연구)

  • Lee, Se-won
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.17-36
    • /
    • 2022
  • The purpose of this study is to diagnose problems in the regulation and management of Restricted Development Zone and to prepare a construction plan to convert it to a data-based monitoring system. Unlike other land-use zones, the Restricted Development Zone is a exceptional zone that prohibits all development activities other than the minimum maintenance and must be strictly controlled and managed by the local government. However, the current Restricted Development Zone management is distributed according to the conditions of each local government, and it is not possible to monitor changes in the entire Restricted Development Zone as shown in the survey results. In particular, in this study, by introducing an AI-based monitoring system, MOLIT sends the results of detecting changes across the country at regular time points(monthly and quarterly) to the local governments based on the same regulation standards, and the local governments can be trusted while inputting the regulation results into the system. To propose this methodology, first, a survey and interview were conducted with local government officials and experts. Second, we analyzed cases in which AI analysis was applied to local governments and proposed a plan to improve the efficiency of regulation work according to the introduction of the monitoring system. Third, a plan was prepared to establish a monitoring system based on the advancement of the management information system. This monitoring system can be expanded and applied to land that needs periodic regulation and management in the future, and this study tried to propose a methodology and policy for this.

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.

A study on the methods of identifying and verifying the causes of defects on rock bolt stressmeter and rod extensometer (터널계측용 록볼트축력계와 지중변위계의 불량원인 파악과 검증방법에 대한 연구)

  • Kim, Yeong-Bae;Noh, Won-Seok;Lee, Seong-Won;Jeon, Hunmin;Lee, Kang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.411-429
    • /
    • 2022
  • Instrumentations are essential in NATM tunnels, however measuring instruments are installed and applied without performance verification procedures due to insufficient research on methods, procedures, regulations, etc. to verify the reliability of the measuring instruments. In this study, domestic and foreign regulations relating to the verification and calibration of instruments were investigated and necessities for accreditation standards were proposed. In order to identify the causes of the defects, an external inspection was performed on rock bolt stressmeter and rod extensometer, which are measuring instruments with relatively complex structures. For verifying the performance of these instruments, verification devices were developed that can load step-by-step and the causes of defects were identified in measuring instruments of nine domestic manufacturers. Through the performance test, a number of measuring instruments were found to be defective. It was important to test the performance of the instruments in the state of a finished product and accordingly performance inspection methods and procedures were proposed. The results of this study are expected to help preparing related regulations for verifying instrument performance and selecting instruments in the field.