• Title/Summary/Keyword: construction productivity

Search Result 1,122, Processing Time 0.029 seconds

Detail Design and Structural Stability Analysis for Automated PHC Pile Cutting Machine (PHC 파일 원커팅 두부정리 자동화 장비의 상세설계 및 구조적 타당성 분석)

  • Yeom, Dong Jun;Hwang, Ji Young;Park, Yesul;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2018
  • The primary objectives of this study are to develop a detail design of automated PHC pile head cutting machine and structural stability analysis of detail design that improves the conventional head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and field study, 2)expert survey and interview, 3)selection of core technology using AHP analysis, 4)deduction of detail design 5) verification of structural stability. As an outcome, it is analyzed that gripper and gripper bearing shaft are structurally stable. Their maximum stresses are shown as 15.93%, 10.58% compared to their yield strength respectively. The results of detail design and structural stability analysis in this study will be utilized for the actual development of the automated PHC pile cutting machine prototype.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

A Preliminary Study of Prototype for Improving VE Workshop Phase based on BIM (BIM 기반 VE 워크샵 단계의 업무 향상을 위한 프로토타입 개발에 관한 기초연구)

  • Kim, Hojun;Park, Heetaek;Park, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.113-122
    • /
    • 2015
  • VE workshop is performed based on VE expert' experiences without retrieving VE data of similar previous projects. Moreover, it usually omitted or applied for the sake of formality due to insufficiently understanding VE function, limited time, space and budget. Even though many studies have established VE databases for retrieving and reusing VE data, VE workshop is still inefficient and ineffective to improve projects' values. With this regard, this study proposes a preliminary prototype for improving VE workshop, which utilizes the state-of-the-art information communication technologies(ICTs) including Building Information Modeling(BIM), Mobile Computing(MC), Network Service System(NSS), and Database Management System(DBMS) for better managing, storing and reusing VE data. The prototype was developed to evaluate advantages and limitations. The results show that the proposed prototype can support visual VE data retrieval from similar previous projects, enhance communication among VE team and save much time and cost comparing to traditional VE. Through this, the productivity of VE workshop can improve efficiently and effectively.

Development of Integrated Wireless Sensor Network Device with Mold for Measurement of Concrete Temperature (콘크리트 온도 측정을 위한 거푸집 일체형 무선센서네트워크 장치 개발)

  • Lee, Sung Bok;Park, Seong Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.129-136
    • /
    • 2012
  • Temperature of fresh concrete can be effectively used to predict the strength of concrete being cured and make an informed decision for stripping the molds. A hygrothermograph and thermo-couple sensors that require an extensive wiring have been applied to measure a temperature of concrete at the early stage of the curing process on site. However, these methods have limits to provide the temperature data in real time due to harsh working environment including frequent cutting of wires. Therefore, this study is aiming at developing a device based on wireless sensor network to measure the temperature of concrete being cured in formwork. The result showed that the wireless sensor with probe type thermistor which is developed had the same temperature data compared to the existed wire type thermistor, and we confirmed the temperature history of concrete in real time for 28 days throughout the gateway by wireless network that collects the temperature data measured from specimens in laboratory. Also, the network device for transmission can be easily separated from the probe sensor part and reused consistently. If the wireless sensor network device developed uses in the field, the temperature management of concrete will be systematically conducted from at the early stage of the curing, and especially be effective for cold weather concrete construction. In addition, it will contribute to the establishment of advanced quality control system for concrete and productivity of supervisors on site will be increased in the future.

Requirement Analysis of a System to Predict Crop Yield under Climate Change (기후변화에 따른 작물의 수량 예측을 위한 시스템 요구도 분석)

  • Kim, Junhwan;Lee, Chung Kuen;Kim, Hyunae;Lee, Byun Woo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Climate change caused by elevated greenhouse gases would affect crop production through different pathways in agricultural ecosystems. Because an agricultural ecosystem has complex interactions between societal and economical environment as well as organisms, climate, and soil, adaptation measures in response to climate change on a specific sector could cause undesirable impacts on other sectors inadvertently. An integrated system, which links individual models for components of agricultural ecosystems, would allow to take into account complex interactions existing in a given agricultural ecosystem under climate change and to derive proper adaptation measures in order to improve crop productivity. Most of models for agricultural ecosystems have been used in a separate sector, e.g., prediction of water resources or crop growth. Few of those models have been desiged to be connected to other models as a module of an integrated system. Threfore, it would be crucial to redesign and to refine individual models that have been used for simulation of individual sectors. To improve models for each sector in terms of accuracy and algorithm, it would also be needed to obtain crop growth data through construction of super-sites and satellite sites for long-term monitoring of agricultural ecosystems. It would be advantageous to design a model in a sector from abstraction and inheritance of a simple model, which would facilitate development of modules compatible to the integrated prediction system. Because agricultural production is influenced by social and economical sectors considerably, construction of an integreated system that simulates agricultural production as well as economical activities including trade and demand is merited for prediction of crop production under climate change.

A Study on Loading Method of Large Scaffolding Module for LNG Carriers Using TRIZ (TRIZ를 이용한 LNG 운반선 대형 비계 모듈의 탑재 방안 연구)

  • Park, Myeong-Chul;Shin, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.94-100
    • /
    • 2021
  • To improve the productivity of cargo containment construction for a membrane LNG carrier, it is important to shorten the installation period and process of the scaffolding system, which is a construction workbench of a cargo containment for a membrane LNG carrier. As an effective method, opinions are being gathered to enlarge the lifting unit from the existing two stages to eight stages. On the other hand, the stresses around the pin and hole will increase significantly because of the increase in lifting load according to the large size of the module. The purpose of this study was to establish a new large module-lifting plan by introducing TRIZ to solve these problems. This study adopted a method to utilize 40 inventive principles, which is one of the various problem-solving tools of TRIZ. First, technical contradictions were derived, the engineering parameters were selected. Second, efficient inventive principles were selected to overcome the technical contradictions using a contradiction matrix. Finally, the general and specific solutions were derived through the selected inventive principle, and structural analysis confirmed that the stress generated in the structure was low. The utility of TRIZ was confirmed by the successful lifting of large modules using the established lifting method.

Mathematical Algorithms for the Automatic Generation of Production Data of Free-Form Concrete Panels (비정형 콘크리트 패널의 생산데이터 자동생성을 위한 수학적 알고리즘)

  • Kim, Doyeong;Kim, Sunkuk;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.565-575
    • /
    • 2022
  • Thanks to the latest developments in digital architectural technologies, free-form designs that maximize the creativity of architects have rapidly increased. However, there are a lot of difficulties in forming various free-form curved surfaces. In panelizing to produce free forms, the methods of mesh, developable surface, tessellation and subdivision are applied. The process of applying such panelizing methods when producing free-form panels is complex, time-consuming and requires a vast amount of manpower when extracting production data. Therefore, algorithms are needed to quickly and systematically extract production data that are needed for panel production after a free-form building is designed. In this respect, the purpose of this study is to propose mathematical algorithms for the automatic generation of production data of free-form panels in consideration of the building model, performance of production equipment and pattern information. To accomplish this, mathematical algorithms were suggested upon panelizing, and production data for a CNC machine were extracted by mapping as free-form curved surfaces. The study's findings may contribute to improved productivity and reduced cost by realizing the automatic generation of data for production of free-form concrete panels.

A Study on the Stiffness of CBA(Corner Block with Anchor Bolt) Joint in Knockdown Type Table Furniture (조립식(組立式) 탁자(卓子)의 CBA접합부(接合部) 강성(剛性)에 관(關)한 연구(硏究))

  • Chung, Woo-Yang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-64
    • /
    • 1989
  • Corner block with anchor bolt(CBA) joint method used in knock-down type table furniture manufacturing can reduce the packing and transporting cost. Unfortunately. it also has the disastrous defect to be loosend and unstable during the service life mainly due to fatigue and creep(repeated and prolonged loading). So 22 joint groups constructed were tested to evaluate the effect of some design factors related to the size of side rail(apron). block attachment to side rail. and the number of anchor bolt as well as the effect of the type of corner block(mitered type vs. rectangular type) Usable strength from the stiffness coefficients of each joint group were analysed with SPSS /PC+ and described as the criteria of CBA joint construction. The conclusions were as follows: The height of side rail(50, 75 and 100 mm) and the addition of polyvinyl acetate(PVAc) emulsion in the corner block attactment to side rail had the effect on raising the usable strength of CBA joint with remarkable high significance. And the effect of 2 - anchor bolts was also superior to that of 1 - bolt significantly. However. the thickness of side rail(22 mm vs. 25 mm) had no effect on the strengthening the table joint rigidity. Mitered type corner block joint appeared to he recommendable for CBA jointed table construction rather than the rectangular type one regardless of the method of block attachment to side rail. The best result identified from Duncan's multiple comparison was in the construction with 25 mm thick and 100 mm height of side rail fastened using 2 - anchor bolts in mitered type corner block. But it would be reasonable to use 22 mm thick & 75 mm high side rail and mitered corner block with PVAc emulsion & 2 bolts considering the productivity and production cost down in the MDF furniture manufacturing industries.

  • PDF

Effect of Dry Matter Production and Growth Construction of Zoysia japonica on a photoperiod (일조시간 조절이 잔디(Zoysia japonica)의 물질생산과 생장에 미치는 영향)

  • 도봉현
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.2
    • /
    • pp.65-76
    • /
    • 2001
  • This study was designed to estimate on the interaction of the first productivity, light condition and to examine the ecophysiological characteristics of Zoysia japonica. rtificial community of Zoysia japonica was analyzed effect of matter production and growth construction under various shading condition. The results summarized this experiment were as follows; 1. The relative growth rate (RGR) in all experimental plots was high during the growth stage of 20 days after transplanting, and then decreased. The maxium RGR value appeared in the control plot (2.13g/g. 10days) during the growth stage from 10 to 20 days after transplating. RGR value in server shading of short day condition was remarkably decreased from the early growth stage. The main factor to lower RGR value considered as a short day condition than that of shading. 2. The net assimilation rate (NAR) in all experimental plots except 3hour photoperiod plot was high during the early growth stage after transplanting, and then decreased early growth stage after transplanting, and then decreased as the growth proceeded. The maxium value appeared in the control plot (35g/g. 10days). NAR value in the severe shading of short day condition plots was low. Especially, NAR value in the three hours photoperiod plot was remarkably low from the early growth, there was no great difference by growth stage. NAR had negative correlation with LAI and positive correlation with RGR. 3. The increasing rate of leaf area ratio(LAR) was high during the early growth stage after transplanting in the control plot and in the photoperiod plot, the shorter the exposure time to sunlight, the higher the LAR value from the early growth stage. Especially, its value in the 3 hour photoperiod plot was remarkably high but its increasing rate was lower as the growth proceeded. LAR hade negative correlation on RGR and NAR. 4. The crop growth rate(CGR) in each experimental plot was increased until 50 days after transplanting, and then decreased. After that time, the maxium CGR value appeared in the control plot (1.56g/$\textrm{cm}^2$. 10-days), 60 days after transplanting, CGR had positive correlation with LAI. The optimum LAI in the control, 9 hour, 7 hour, 5 hour, and 3 hour photoperiod plots appeared as 1.87, 1.12, 0.83, and 0.18.

  • PDF

An Analysis of the Operational Time and Productivity in Whole-tree and Cut-to-Length Logging Operation System (전목 및 단목 집재작업시스템에서 작업시간 및 공정 분석)

  • Kim, Min-Kyu;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.344-355
    • /
    • 2012
  • This study was conducted to analyze on the operational time and productivities of logging operations in whole-tree logging operation system by tower-yarder and swing-yarder, and in cut-to-length logging operation system by excavator with grapple in order to establish the efficient logging operation system and to spread logging operation technique. In the analysis of operational time, in case of whole-tree logging operation system, the felling time was 46.6 sec/cycle by chain saw, the yarding time was 480.6 sec/cycle by tower-yarder, the yarding time was 287.4 sec/cycle by swing-yarder and the bucking time was 155.14 sec/cycle by chain saw. In case of the cut-to-length logging operation system, the felling and bucking time was 225.65 sec/cycle by chain saw, the cut-to-length extraction time was 4,972 sec/cycle by excavator with grapple, the branches and leaves extraction time was 3,143 sec/cycle by excavator with grapple. The forwarding time was 4,688 sec/cycle by wheel type mini-forwarder, the forwarding time was 2,118 sec/cycle by excavator with grapple and small forwarding vehicle. In the analysis of operational productivities, in case of whole-tree logging operation system, the average felling performance was $57.89m^3/day$ by chain saw, the average yarding performance was $20.3m^3/day$ by tower-yarder, $31.55m^3/day$ by swing-yarder respectively, the average bucking performance was $20.3m^3/day$ by chain saw. In case of the cut-to-length logging operation system, the average felling and bucking performance was $11.96m^3/day$ by chain saw, the average cut-to-length extraction performance was $34.75m^3/day$ by excavator with grapple, the average branches and leaves extraction performance was $37.66m^3/day$ by excavator with grapple, the average length of operation road construction was 73.8 m/day by excavator with grapple. The average forwarding performance by wheel type mini-forwarder and the average forwarding performance by excavator with grapple and small forwarding vehicle was $15.73m^3/day$ and $65.03m^3/day$, respectively.