• Title/Summary/Keyword: construction mechanics

Search Result 914, Processing Time 0.032 seconds

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Influence of the shape of head anchors on the durability of reinforced concrete elements

  • Martinez-Echeverria, M. Jose;Gil-Martin, Luisa Maria;Montero, Jose Rodriguez;Hernandez-Montes, Enrique
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • This paper looks into how the shape of headed bars may influence the durability of reinforced concrete structures. Nowadays the only heads used in site works are cylindrical in shape. An alternative shape of head is studied in this piece of work. The new head reduces the concentration of stresses and so the appearance of cracks. In this work durability is studied based on both, first cracking and failure mode. An experimental campaign of 12 specimens and finite element modelling are described. The specimens were subjected to an accelerated corrosion process using an electrical current supply. Direct current was impressed on the specimens until breaking. Test results and the results obtained from numerical models are presented. Results are presented in term of comparison between the two shapes of heads studied. It was shown that the shape of the head has a significant influence on durability of reinforced concrete structures with headed reinforcing bars.

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

Rock Mechanics Modeling of the Site for the 2nd Step Construction of the KAERI Underground Research Tunnel (KURT) (KURT 2단계 건설부지에 대한 암석역학모델 설정)

  • Jang, Hyun-Sic;Ko, Chi-Hye;Bae, Dae-Seok;Kim, Geon-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.247-260
    • /
    • 2014
  • Rock masses at the site for the $2^{nd}$ step construction of the KAERI Underground Research Tunnel (KURT) are divided into six units to establish a rock mechanics model that is dependent on the geological characteristics and degree of joint development. The site primarily consists of three granitic units (G1, G2, and G3), two dykes (D1 and D3), and a fault zone of poor rock mass quality (F3). The F3 unit crosses the tunnel at the beginning of the site of $2^{nd}$ step construction. The rock masses of each unit are classified by RMR (Rock Mass Rating), Q-system, and RMi (Rock Mass Index), all based on borehole logging data. The deformation modulus, rock mass strength, cohesion, and friction angle for each unit are calculated using established empirical relationships. The representative rock mass classification and geotechnical parameters for the rock mass units are established, and a rock mechanics model for the site is proposed, which will be useful in the design and stability analysis of the $2^{nd}$ step construction of KURT.

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.

RESEARCH OF WELDING EFFECT ON STRUCTURAL INTEGRITY AT HIGH TEMPERATURE

  • Tu, Shan-Tung;Yoon, Kee-Bong
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.11-24
    • /
    • 1998
  • The invention of fusion wilding technology has brought on a revolutionary change in manufacturing industry which enables the construction of large scale high temperature plants in chemical, petrochemical and power generation industries. However, among the failure cases of high temperature components, premature failures of weldments have taken a large percentage that indicates the detrimental effect of welding on structural integrity. The accurate prediction of the high temperature behaviour of welded components is thus becoming increasingly important in order to realise an optimised design and maintenance of a plant life. In the present paper, recent research activities on high temperature behaviour of welded structures are briefly summarised. A local deformation measuring technique is proposed to determine the creep properties of weldment constituents. A damage mechanics approach is introduced to study the life reduction and ductility reduction due to the presence of a weld in high temperature structures. Finally, the high temperature creep crack growth in weldments is discussed.

  • PDF

Construction of the shape functions of beam vibrations for analysis of the rectangular plates by Kantorovich-Vlasov's method

  • Olodo, Emmanuel E.T.;Degan, Gerard
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.595-601
    • /
    • 2014
  • For analysis of the plates and membranes by numerical or analytical methods, the question of choice of the system of functions satisfying the different boundary conditions remains a major challenge to address. It is to this issue that is dedicated this work based on an approach of choice of combinations of trigonometric functions, which are shape functions of a bended beam with the boundary conditions corresponding to the plate support mode. To do this, the shape functions of beam vibrations for strength analysis of the rectangular plates by Kantorovich-Vlasov's method is considered. Using the properties of quasi-orthogonality of those functions allowed assessing to differential equation for every member of the series. Therefore it's proposed some new forms of integration of the beam functions, in order to simplify the problem.

Behaviour and stability of prestressed steel plate girder for torsional buckling

  • Gupta, L.M.;Ronghe, G.N.;Naghate, M.K.
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • A higher level of engineering standard in the field of construction, is the use of prestressing in building structures. The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel girders were reported in literatures, but much of the work was not studied with reference to the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccentrically, will behave as a beam-column, which is subjected to axial compression and bending moment which will cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necessary for stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of "Vlasov's Circle of Stability" under eccentric prestressing force.