• Title/Summary/Keyword: construction cost per M

Search Result 55, Processing Time 0.026 seconds

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

A study on the Development of Ground water by the Infiltration Gallery (집적암거에 의한 대류수개발에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3096-3106
    • /
    • 1973
  • As a link in the chain of antidrought measure, our attempt is made to obtain basic informations on the construction of an infiltration gallary which can be supplied with irrigation water by catching of underground water in small river beds, which is economical, permanent and efficient. The experiment was made, concerning the structure of catchment conduits, by constructing a model sand tank $1.5m{\times}5m{\times}1.5m$ in dimension made of reinforced concrete. Various kinds of measuring equipment were attached to the model tank which contains a set of catchment conduits, each of them was made 30cm in diameter and 60cm in length with the ratio of sectional area to total area of influx holes 10:1, 20:1, 30:1. The average size of influx holes was fixed from 0mm to 10mm, 20mm and 30mm in diameter respectively. Obtained results are as follow; (a) In view of the water catchment capacity, manufacturing cost and the antipressure strength of the catchment conduits, it is the best method to decide the total number of influx holes 20 per sq. meter of each tile surface, and the size of influx holes 20mm in diameter, when the conduits have diameter less than 1m. (b) The greatest factor of safety against external load is to arrange the influx holes in a zigzag manner on the tile surface. The most effective formula of arrangement is $S{\geqq}\sqrt{2gd}$ where: s : spacing of opening row. g : spacing of opening line. d : diameter of influs hole.

  • PDF

Research on Development of Farm Land of Gab River Basin(I) -Enlargement of Farm Land River-Site (갑천류역(甲川流域)의 농업개발(農業開發)에 관(關)한 조사연구(調査硏究)(I) -하천부지(河川敷地) 농지확대(農地擴大)를 중심(中心)으로)

  • Kang, Sin Up;Park, Hee Bum;Cho, Seung Seup;Ahn, Byong Gi;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.265-279
    • /
    • 1975
  • This study was conducted to investigate the development of Gab river-basin which was a part of the farm land enlargement to contribute to the increased production of food. The results were as follows; 1. Gab river has the upper stream which occupy 50 percent in moumtains and the mid-stream in the Daejeon city area, and the downstream in a field which is about 22.9 percent in which farming area per household is 0.82 ha., agricultural population is 76 percent except of Daejeon city. Also, urban enlargement of mid-stream basin and development of industrial area in the lower stream diminish farm land. Consequently, this area should be developed to farm land to increase farming size. 2. There is no possibility to develop farm land in mountains of which (64.9 percent) is forests and in midstream which was constructed river-improvement. But Weonjeong area and Yongcheon area will be effective area. 3. If river banks of Weonjeong area will make straight with cost of construction 195,000,000 won, bank length 6 km will be useless, water will flow smoothly, flood will be prevented, farm land will develop 21.66 ha in which rice will produce annually 81.698 M/T which is about 10,860,000 won. 4. This area has good conditions of development. that is, investment efficiency (B/C) is 1.47 more than 1.00. 5. This area is a multiple purpose development district. The reasons are that there are beautiful mountains and a reservoir to be expected to construct, so it will be a sight seeing district in the vicinity of Daejeon city. 6. If Honam railway double line and river straight construction had executed simultaneously, cost of construction 50,000,000 won would have saved.

  • PDF

Comparative Study on the Subsurface Drainage Discharge Performance by the Type of Non-Excavation Subsurface Drainage Culvert (비굴착 지하배수암거 형태별 지하배수 성능 비교분석)

  • Kim, Hyuntai;Ryu, Jeonyong;Jung, Kiyuol;Seo, Donguk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.73-81
    • /
    • 2018
  • In this study, subsurface discharge performance has been studied through theoretical seepage analysis on four types of culverts that can be installed under the condition of non-excavation, such as (a)perforated pipe(${\Phi}50mm$), (b)perforated pipe+horizontal mat (B50cm) (c)perforated pipe+horizontal mat+vertical gravel(B<10cm), (d)perforated pipe+vertical gravel(B<10cm), and existing typical type (e)perforated pipe with gravel (B40, h=40cm) which can be installed by excavation. The analysis results were as follows. i) Subsurface discharge performance per unit (m) was (a)type 56%, (b) 91%, (c) 96%, (d) 76%, respectively, lower than the value of (e)culvert. ii) However, considering that non-excavation culvert can be installed at a spacing of 5m with the installation cost of the existing excavation culvert at the interval of 10m, it was analyzed that unit subsurface discharge(q) of (a)20.2mm/day(110%), (b)32.8(178%), (c)34.6(188%) (d)27.5(149%) in the four types of non-excavation culvert installed at intervals of 5m under the condition of $ k=10^{-4}cm/s$ was much larger than the amount of (e)type 18.5(100%), existing excavation culvert installed at 10m interval. iii) Through the test construction, peak subsurface drainage discharge($q_p$) was 38.4mm/day, which is larger than the value of design criteria and confirmed that it satisfies the analysis results as well. iv) In particular, it was evaluated that (b)perforated pipe+horizontal mat(B50cm) are low cost, high efficiency subsurface drainage culvert type with sufficient drainage performance(178%).

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.

An Experimental Study to Establish a System for Vertifying the Insulation Performance of Buildings (건축물의 단열성능 검증 시스템 구축을 위한 실험적 연구)

  • Kim, Hyun-Jin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.203-211
    • /
    • 2021
  • Recently, the insulaton design standards for reducing the energy use of buildings have been strengthened. Althoug insulation work is the most cost-effective method for reducing the primary energy consumption per unit area of a building, there are no evaluation criteria for insulation performance at the time of construction and completion inspection. The purpose of this study is to provide objective data by establishing a standard for an analysis method and a method for easily experimenting with the exterior wall thermal transmittance of an apartment house using a thermal transmittance measuring device(TESTO 435). For the exterior wall of the test subject, the specific heat per unit area exceeded 20kJ/(m2·K), and the data at the end point suitable for ISO 9869-1 were analyzed by the average method. The measured values of the thermal transmittance for 3 consecutive days converged within +5% of the desing value, and the standard deviation of the thermal transmittance by day decreased in the order of 1-Day > 3-Day > 2-Day. The standard deviation of the thermal transmittance by time period decreased in the order of 00:00~24:00 < 19:00~07:00 < 00:00~07:00. The measured value of the thermal transmittance for the time perion of 00:00 to 07:00 per day almost coincided with an error of -3% to + 2% compare to the desing value.

The estimating method of construction workable-quantity per unit time - Focused on Pump-Dredge - (건설기계 시간당작업량(Q) 산정 개선방안 -펌프준설선 작업효율(E)을 중심으로-)

  • Ahn, Bang-Ryul;Tae, Yong-Ho;Suh, Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.3
    • /
    • pp.125-133
    • /
    • 2010
  • Although work-efficiency of construction machinery is a critical factor for estimating its workable-quantity perunit time, the efficiency figure table presented in the Poom-Sam that is used for Construction Cost Estimation of public sectors in Korea is very subjective for practical usage. In order to suggest objective work-efficiency table for a Pump-Dredger, domestic and overseas documentary records were investigated and on-going construction sites were also visited. Moreover, actual work quantities collected from the site visits were compared with the ones calculated based on the Standard Measurement Methods used in Japan. The research found that the table can be revised by means of detailing down by several factors, namely project type, depth of soil, undersea-site shape, and condition on the sea for better estimation of its workable-quantity. The research will be the foundation for applying the rapid development of Construction Equipment and technology to the appropriate cost estimations and the ground work of related studies.

Cost-effectiveness of Tunnel Blasting Pattern by Applying Large Blasting Holes (대구경의 발파공을 적용한 터널 발파 패턴의 비용 효과)

  • Choi, Won-Gyu
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.147-152
    • /
    • 2020
  • The research is carried out to analyze the cost-effectiveness of blasting patterns with regard to the diameters and design of blasting holes. Blasting patterns for single diameter array, and mixed diameter array were comparatively analyzed with regard to drilling and charging time, and materials required. The number of blasting holes required for single array pattern and mixed array pattern were 138 and 93 holes, respectively. From the drilling time analysis, reduction in time and its efficiency of mixed pattern were 139 minutes and 25%, respectively, in comparison with single pattern. Charging time reduction and its efficiency of mixed blasting pattern were evaluated as 22.5 minutes per worker and 33%, respectively, compare to single blasting pattern. The explosive quantities of G1 and G2 required for single array patterns were 270 and 30, while those were 222 and 20 for mixed array patterns for tunnelling 4m. And single pattern required 45 more detonators than the mixed pattern. The evaluation of material required can also be positive parameter for cost reduction of tunnel construction.

Effects of Sowing Density and Thinning Treatment on Growth Characteristics and Yield of 3-Year-Old Ginseng Cultivated in a Greenhouse (인삼 하우스 직파재배 시 파종밀도 및 솎음처리가 3 년근 인삼의 생육과 수량에 미치는 영향)

  • Suh, Su Jeoung;Jang, In Bae;Yu, Jin;Jang, In Bok;Hyun, Dong Yun;Park, Hong Woo;Kweon, Ki Bum
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.1
    • /
    • pp.64-71
    • /
    • 2018
  • Background: The cultivation of ginseng (Panax ginseng C. A. Meyer) in greenhouses could reduce the use of pesticides and result in higher yield; however, construction costs are problematic. The adaptation of direct-sowing culture in greenhouses could reduce the cost of ginseng production. Methods and Results: To improve seedling establishment in direct-sowing culture, effects of sowing density (SD), number of seeds sown per hole (SN), and thinning (TH) treatment on the root yield were investigated after 3 years of seeding. The emergence rate was significantly influenced by SD, but not by SN or TH. Damping-off and rusty roots increased with an increase in SN with diminishing effects of SN on seedling establishment. Root weight and diameter were affected by SD, SN, and TH, however, there were no statistical significances. The total number of roots harvested per unit area increased with increasing SD and SN, and the weight of roots was affected by SD, but not by SN or TH. Conclusions: Multi-seed sowing per hole and/or thinning might not be an efficient method for the direct-sowing culture of ginseng. The SD for direct seeding culture in greenhouses should be approximately $33-42seeds/m^2$ for an optimum yield of 3-year-old ginseng.

Optimal location planning to install wind turbines for hydrogen production: A case study

  • Mostafaeipour, Ali;Arabi, Fateme;Qolipour, Mojtaba;Shamshirband, Shahaboldin;Alavi, Omid
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.147-177
    • /
    • 2017
  • This study aims to evaluate and prioritize ten different sites in Iran's Khorasan provinces for the construction of wind farm. After studying the geography of the sites, nine criteria; including wind power, topography, wind direction, population, distance from power grid, level of air pollution, land cost per square meter, rate of natural disasters, and distance from road network-are selected for the analysis. Prioritization is performed using data envelopment analysis (DEA). The developed DEA model is validated through value engineering based on the results of brainstorming sessions. The results show that the order of priority of ten assessed candidate sites for installing wind turbines is Khaf, Afriz, Ghadamgah, Fadashk, Sarakhs, Bojnoord, Nehbandan, Esfarayen, Davarzan, and Roudab. Additionally, the outcomes extracted from the value engineering method identify the city of Khaf as the best candidate site. Six different wind turbines (7.5 to 5,000 kW) are considered in this location to generate electricity. Regarding an approach to produce and store hydrogen from wind farm installed in the location, the AREVA M5000 wind turbine can produce approximately $337ton-H_2$ over a year. It is an enormous amount that can be used in transportation and other industries.