• Title/Summary/Keyword: constant velocity joint

Search Result 60, Processing Time 0.025 seconds

Research on Friction Characteristics of Constant Velocity Joint Grease (등속조인트용 그리스 마찰특성 연구)

  • Lee, Sung Uk;Bae, Dae Yoon
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.223-227
    • /
    • 2013
  • A GAF (generated axial force) is produced at a plunging-type CVJ (constant velocity joint). A high GAF can cause vibrations in a vehicle. Grease is used to reduce friction between the roller and the track of the outer case of a CVJ. The grease performance depends on the surface conditions and operating temperature. The surface of the outer case is extremely rough and hard. In recent times, the maximum operating temperature of CVJs has crossed $140^{\circ}C$, because the exhaust line is now located close to the CVJ. In this study, we examined the friction characteristics of friction additives at $25-150^{\circ}C$ and determined an optimal formulation with a low friction coefficient. This formulation can be used to develop low-friction grease that can reduce the GAF produced at a CVJ by approximately 7-26%.

Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7 (차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델)

  • 손정현;유완석;김두현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

Thickener Syntheses and Structure Analysis of Di-Urea Grease (Di-Urea 그리이스 증주제 합성과 구조분석에 관한 연구)

  • 엄기청;정근우;조원오;김영운;서인옥;임수진;박교범
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.306-312
    • /
    • 1998
  • This paper describes syntheses of thickener for di-urea grease using constant velocity joint. The thickeners of di-urea grease were synthesized by reaction of diisocyanate with various alkylamines, hexylamine, octylamine, stearylamine and cyclohexylamine at high temperatxire. The synthesized thickener were analyzed by FT-IR spectroscopy and two kinds of Mass spectroscopy (EI & FAB). Dropping point and Consistency of synthesized di-urea grease were determined.

  • PDF

A study on the Optimum Wheel Characteristics Using Grinding Machine (연삭 장비를 이용한 최적의 휠 특성분석)

  • Ko, Jun-Bin;Kim, Woo-Kang;Jeon, Tek-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.142-148
    • /
    • 2008
  • This study aims to find the optimal cutting conditions, which are obtained by grinding condition, and the grinding characteristics and condition of constant velocity joint were investigated with respect to wheel velocity, depth of cut, feed speed. Grinding machine has been widely used in manufacturing optical reflects of metal. Such as steel are easy to be machined because of their proper material. As a result I obtained the data of grinding conditions makes good surface roughness and the optimal condition of grinding and get the mesh condition. The purpose of this study is to find the optimum grinding wheel characteristics for cutting constant velocity joint.

  • PDF

Strength Analysis of Cross Groove Type Constant Velocity Joint Cage for Propeller Shaft (프로펠러샤프트용 Cross Groove형 등속조인트 케이지 강도해석)

  • Oh, Byung-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.74-79
    • /
    • 2008
  • The fracture strength of cross groove type constant velocity joint is largely determined by the fracture strength of the cage having window-like pockets for retaining the torque transmitting balls. A stress distribution acting on the cage is influenced by rigidities of the rim portion and of the column members, therefore requires a calculation such as FEA. To analyze fracture strength of cage, a 3-D elasto-plastic finite element analysis and a submodeling technique are used to achieve both computational efficiency and accuracy. The results are in reasonably good agreement with experiment.

A Study on Ferrite Stainless Steel Corrosion Resistance or Mechanical Characteristics of 434LD2 ABS Sensor Ring (센서 링이 내식성과 기계적 특성에 관한 연구)

  • 양현수;금영준;정풍기
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.1
    • /
    • pp.129-141
    • /
    • 2003
  • In this thesis, using the 400 series ferrite stainless steel such as 434LD$_2$ which are furter excellent then the existing ferric products in mechanical characteristics, and experiment has been conducted on corrosion resistance of sensor ring. The results are following. 1. The products before sintering are much more corrodible in the condition of spray test of salt water and ammonia than humidity and nitrogen condition. 2. 434LD$_2$ ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. thus the decreasing production process has been obtained. 3. As hardness value of $H_{RB}$ 80 and tensile test, 434LD$_2$ ferrite stainless steel with show a good endurance when it is combined to constant velocity joint (c/v joint), and has a good hardness properties endurable to sand and pebble impact.

Process analysis of multi-stage forging by using finite element method (다단단조 CV JOINT 생산품의 유한요소해석)

  • Park, K.S.;Kim, B.J.;Kwon, S.O.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.399-402
    • /
    • 2006
  • The outer race of CV(constant velocity) joint is an important load-supporting automotive part, which transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. Traditional warm and cold forging methods have their own limitations to produce such a complex shaped part; warm forging requires complex system with relatively higher manufacturing cost, while cold forging is not applicable to materials with limited formability. Therefore, multistage forging may be advantageous to produce complex shaped parts. In order to build a multistage forging system, it is necessary to characterize mechanical properties in response to system design parameters such as temperature, forging speed and reduction. For the analysis of formability of multistage forging process, finite element method(FEM) has been used for the process analysis. As a model case, a constant velocity (CV) joint forging process is analyzed by FEM, since CV joint has a complex shape and also its required dimensional tolerances are very tight. The data acquired by FEM is compared with operational forging data obtained from an industrial production line. Based on this comparative analysis, multistage forging process for CV joints is proposed.

  • PDF

Vibration response of the boat composite shafting having constant velocity joint during change of the operation regime

  • Shuripa, V.-A;Kim, J.-R;Kil, B.-L;Kim, Y.-H;Jeon, H.-J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.382-392
    • /
    • 2004
  • The usage of constant velocity (CV) joint is effective for motorboats on gliding regime of the motion. During transition on the gliding when angle of the CV differs from null on driving and driven composite shafts there are moments of the second order. Excitation of oscillations of the second order moments occurs when driving shafts transmits a variable torque. which generates through CV joint a lateral moment acting on the bearing. As a result of oscillations from a resonating harmonic of a shafting the harmonic with the greater or periodically varying amplitude for power condition trough transferring to nominal power 144kW. Beating conditions coincide with third mode having frequency 45.486 Hz. In that case there is high increasing of the equivalent stresses. The forming of the stiffness of the composite material is concerned to use most orientation of the layer angle in the range of $\pm$60 degrees relatively of shaft axis. Application of that angles for layer orientation gives possibility to avoid high disturbance of the shafting for motorboat transition regime.

Development and Verification of Measuring Tester for Generated Axial Force at Constant Velocity Joints (등속조인트에서 발생하는 축력 측정장치 개발 및 검증)

  • Lee, Kwang-Hee;Lee, Deuk-Won;Lee, Chul-Hee;Yun, Hyuk-Chae;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.328-332
    • /
    • 2012
  • Generated Axial Force (GAF) due to internal friction at Constant Velocity (CV) joints is one of the causes generating vibration problems such as shudder in vehicle. In this study, the GAF measuring tester is developed to precisely measure GAF caused by internal friction in CV joints. As the developed tester can control temperature at joint, driving torque, angle of rotation and joint angles, actual driving conditions such as sudden acceleration can be applied to the machine. GAFs are measured and compared by using different types of grease in tripod housing. Also GAFs are measured for both new and used CV joints to be compared and analyzed. The test result shows the repeatability and consistency of the tester in terms of the different test conditions. By using the developed CV joint tester, friction performance of the joint can be evaluated by proposing the best CV joints as well as greases generating the lowest GAF.

Rigid-Plastic Finite Element Analysis of a Ring Rolling Process of the Inner Race Cage of a Constant Velocity Joint (등속조인트 인너레이스 케이지 링 압연공정의 강소성 유한요소해석)

  • Moon, H.K.;Park, J.H.;Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.352-356
    • /
    • 2007
  • In this study, a rigid-plastic finite element method is applied to simulating a ring rolling process of the inner race cage of a constant velocity joint for the passengers' cars. The ring rolling process is mathematically modeled by several assumptions. The defect formation at the side ends is predicted in detail. The predictions are compared with the experiments and a good agreement is observed in terms of deformed shape.

  • PDF