• Title/Summary/Keyword: constant acceleration

Search Result 313, Processing Time 0.025 seconds

A Study on the Estimation of the Ride Quality of a Large-Sized Truck Using a Computer Model (컴퓨터 모델을 이용한 대형트럭의 승차성능 평가에 관한 연구)

  • Mun, Il-Dong;O, Jae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2048-2055
    • /
    • 2001
  • This paper develops a computational model for estimating the ride quality of a cabover type large-sized truck in a double wheel bumpy ride test. The computational model is developed using ADAMS. To verify the developed model, an actual vehicle double wheel bumpy ride test is performed. In the test, the vehicle maintains a straight course with a constant velocity such that the front two wheels are passed the bump at the same time. The bump has the height of 60mm, and the width of 550mm. In the test, four velocities are used. They are 10kph, 20kph, 30kph and 40kph. Since the large-sized truck's center of gravity location is high, and its weight is heavy, it is a quite severe test condition to perform the test with more than 30kph velocity. In the test, vertical accelerations on the floor of the cab are measured. The measured accelerations are compared to the simulation results. From the comparison, it is shown that the developed model can predict not only the measured acceleration's tendency but also peak accelerations quite well. In this paper, the validated model is utilized to compare the ride quality between a vehicle with a multi-leaf spring and a vehicle with a tapered leaf spring in the front suspension system in a double bumpy ride test.

Modeling of Flame Acceleration Considering Complex Confinement Effects in Combustible Gas Mixture (가연성 기체 혼합물에서 복잡한 구조에 따른 화염 가속 모델링)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • This paper presents a numerical investigation of the deflagration-to-detonation transition (DDT) of flame acceleration by a shock wave filled with an ethylene/air mixture as the combustible gas, considering geometrical changes by using obstacles and bent tubes. The model used consists of the reactive compressible Navier-Stokes equations and the ghost fluid method (GFM) for complex boundary treatment. Simulations with a variety of bent tubes with obstacles show the generation of hot spots through flame and strong shock-wave interactions, and restrained or accelerated flame propagation due to geometrical effects. In addition, the simulation results show that the DDT occurs with a nearly constant chemical heat-release rate of 20 MJ/($g{\bullet}s$) in our numerical setup. Furthermore, the DDT triggering time can be delayed by the absence of unreacted material together with insufficient pressures and temperatures induced by different flame shapes, although hot spots are formed in the same positions.

Velocity Control of Magnet-Type Automatic Pipe Cutting Machine and Measurement of Slipping Using MEMS-Type Accelerometer (자석식 자동 파이프 절단기의 정속제어와 MEMS 형 가속도계를 이용한 미끄럼 측정)

  • 김국환;이성환;임성수;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.475-478
    • /
    • 2004
  • In this paper, a magnet-type automatic pipe cutting machine that binds itself to the surface of the pipe using magnetic force and executes unmanned cutting process is proposed. During pipe cutting process when the machine moves around the pipe laid vertical to the gravitational field, the gravity acting on the pipe cutting machine widely varies as the position of the machine varies. That is, with same driving force from the driving motor the cutting machine moves faster when it climbs down the surface of the pipe and moves slower when it climbs up to the top of the pipe. To maintain a constant velocity of the pipe cutting machine and improve the cutting quality, the authors adopted a conventional PID controller with a feedforward effort designed based on the encoder measurement of the driving motor. It is, however, impossible for the encoder at the motor to measure the absolute position and consequently the absolute velocity of the cutting machine in the case where the slip between the surface of the pipe and wheel of the cutting machine is not negligible. As an attempt to obtain a better estimation of the absolution angular position/velocity of the machine the authors proposes the use of the MEMS-type accelerometer which can measure static acceleration as well as dynamic acceleration. The estimated angular velocity of the cutting machine using the MEMS-type accelerometer measurement is experimentally obtained and it indicates the significant slipping of the machine during the cutting process.

  • PDF

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.

A Study on the Dynamic Response Characteristics of Lathe Boring Bar (선반용 보링바의 동적응답특성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.62-69
    • /
    • 2010
  • Internal lathe machining with a boring bar is weak with respect to vibration because the bar is long and slender. Therefore, it is important to study the dynamic characteristics of a boring bar. The purpose of this study was to identify the effects of overhang and cutting conditions on the dynamic response characteristics of a boring bar. For an efficient experiment, an $L_g(3^3)$ orthogonal array was applied and the results were quantitatively analyzed by ANOVA. Overhang, feed per revolution, and depth of cut were selected as independent variables. Meanwhile, dynamic stiffness, damping ratio, damping coefficient, and acceleration were chosen as dependent variables. The vibration signal was obtained from an accelerometer attached to the boring bar, followed by visualization by a signal analyzer. The effect of overhang was found to have a significant effect on the dynamic stiffness, damping ratio, and damping coefficient, but the other variables did not. As the length of the overhang increased, the dynamic stiffness decreased and the damping ratio increased. In addition, the damping coefficient increased until the length of the overhang was 4D (where D is the shank diameter), after which it remained constant. The acceleration decreased until the overhang length was 4D, and then increased sharply when the overhang was increased further. From these results, the behavioral trend of the damping characteristics changed when its overhang length was 4D. Consequently, there is a critical point that the dynamic characteristics of boring bar change.

Simplified elastic design checks for torsionally balanced and unbalanced low-medium rise buildings in lower seismicity regions

  • Lam, Nelson T.K.;Wilson, John L.;Lumantarna, Elisa
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.741-777
    • /
    • 2016
  • A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU) low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum diagram representing seismic actions. This approach of calculation on the planar model of a building which involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the later part of the paper. Another key original contribution to knowledge is taking into account the strong dependence of the torsional response behaviour of the building on the periodic properties of the applied excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not reflected in provisions of major codes of practices for the seismic design of buildings. The deflection behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement estimates based on such conditions can be taken as upper bound estimates in order that a conservative prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use of a constant amplification factor to scale results from planar analysis.

Seismic Response Analysis of Support-Isolated Equipment in Primary Structure (감진계통 지지부가 설치된 기기의 지진해석)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1992
  • The effectiveness of the support-isolation system for the equipment mounted on the primary structure is evaluated to reduce its responses under the earthquake load with considering the interaction between the primary structure and the internal equipment in this paper. A computer code (KBISAP) is developed to analyze the above system using the matrix condensation technique and constant average acceleration method. To evaluate the effectiveness of the support-isolation system, three systems are used in this study as follows: i) fixed-base structure with support-fixed equipment, ii) base-isolated structure with support-fixed equipment and iii) fixed-base structure with support-isolated equipment. The results of case study show that the acceleration of equipment with the support-isolation system is less than that of the support-fixed equipment in the base-isolated structure and significantly reduced the response compared with that of the support-fixed equipment in the fixed-base structure with the reduction factor of 8. The support-isolation system used in this study can reduce the response and also increase the safety margin of the important safety-related internal equipments.

  • PDF

A Study of Calculation Methodology of Vehicle Emissions based on Driver Speed and Acceleration Behavior (차량 주행상태를 고려한 차량 배출가스 산정 모형 구축)

  • Han, Dong-Hui;Lee, Yeong-In;Jang, Hyeon-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.107-120
    • /
    • 2011
  • Traffic signal is one of the major factors that affect the amount of vehicle emissions on urban highway. The amount of vehicle emissions in urban area is highly affected by the vehicle's cruising speeds heavily influenced by the traffic signal lighting conditions. It was attempted in this study to trace the changing patterns of the vehicle emissions by collecting the emission data from a set of simulation studies and by categorizing vehicle cruising conditions into four different groups: idling, acceleration, deceleration, and running at a constant speed. Authors propose a simple emission model prepared based on Kinematic theory. The validation test results showed that the amount of the emission estimated by the proposed model was relatively satisfactory compared to the one of the existing model employing the average speed data only as the determinant.

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang;Cheng, Hualin;Bao, Yangjuan;Chen, Zhiyi;Huang, Yu
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.133-143
    • /
    • 2022
  • The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.

The contact loads inversion between surrounding rock and primary support based on dynamic deformation curve of a deep-buried tunnel with flexible primary support in consideration

  • Jian Zhou;Yunliang Cui;Xinan Yang;Mingjie Ma;Luheng Li
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.575-587
    • /
    • 2024
  • The contact pressure between the surrounding rock and the support is an important indicator of the surrounding rock pressure. There has been a bottleneck in the prediction of contact loads between surrounding rock and primary support in deep-buried mountain tunnels. The main reason is that a reliable method wasn't existed to quantify the contact loads. This study had been taken into account the flexible support role of the primary support, and the fitting curve of surrounding rock deformation for dynamic tunnel construction was proposed. New formulas for the calculation of contact loads between surrounding rock and primary support were obtained by inversion. Comparative analysis of the calculation results with numerical simulation verified the reliability of the calculation method in this study. It can be seen from the analyses that the contact load between surrounding rock and primary support increases, remains unchanged and decreases during acceleration, uniform velocity and deceleration, respectively, and the deformation of the surrounding rock in the acceleration and deceleration stages cannot completely converted into contact loads. The contact loads between surrounding rock and primary support of medium-strength and weak surrounding rock tunnels are generally within 150 kPa and 1 MPa, respectively. For tunnels with weak surrounding rock, advanced support can be installed to reduce the unique release coefficient λ0 and the value of the constant D, with the purpose of reducing the contact loads between surrounding rock and primary support. Changes in support parameters have a small effect on the contact loads between surrounding rock and primary support, but increase or decrease the safety factor, resulting in a waste of resources or a situation that threatens the safety of the support. The results of this research provide guidance for the prediction of contact loads between surrounding rock and primary support for dynamic tunnel construction.