• Title/Summary/Keyword: consolidation parameters

Search Result 166, Processing Time 0.029 seconds

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

Design charts for estimating the consolidation times of reclaimed marine clays in Korea

  • Sang-Hyun Jun;Byung-Soo Park;Hyuk-Jae Kwon;Jong-Ho Lee
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • To predict the consolidation behavior of dredged and reclaimed marine clays exhibiting consolidation settlement with large strains, the finite strain consolidation theory must be used. However, challenges in appropriately applying the theory and determining input parameters make design and analysis studies difficult. To address these challenges, design charts for predicting the consolidation settlement of reclaimed marine clays are developed by a numerical approach based on the finite strain consolidation theory. To prepare the design charts, a sensitivity analysis of parameters is performed, and influencing parameters, such as initial void ratio and initial height, as well as the non-linear constitutive void ratio-effective stresspermeability relation, are confirmed. Six representative Korean marine clays obtained from different locations with different liquid limits are used. The design charts for estimating the consolidation times corresponding to various degrees of consolidation are proposed for each of the six representative clays. The consolidation settlements predicted from the design charts are compared to those in previous studies and at an actual construction site and are found to agree well with them. The proposed design charts can therefore be used to solve problems related to the consolidation of reclaimed marine clays having large strains.

Experimental study on characteristics of sedimentation and consolidation for dredged clay in the west coastal of Korea (국내 서해안 준설토의 침강압밀특성에 관한 실험 연구)

  • Jun, Sang-Hyun;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1190-1197
    • /
    • 2009
  • Design parameters related to Yano's method(1984, 1985), one of experimental approaches having been used widely in Korea to estimate sedimentation and consolidation of dredged and reclaimed ground, were analyzed and their propriety were reassessed in this paper. Data analyses were performed on the basis of the settling test results using samples from the west coastal area of Korea. From analysis of results, for specific characteristics of these dredged and reclaimed marine soft clays, co-relations of initial water content - coefficient of sedimentation/ consolidation - initial setting velocity were evaluated. Relation between height of soil solid and surface height of slurry at the stages of initiation and termination of consolidation was also assessed. Finally ranges and average values of these design parameters were evaluated and typical empirical equations between these design parameters were also proposed.

  • PDF

Nonlinear consolidation of soft clays subjected to cyclic loading - Part I: theory

  • Yazdani, Hessam;Toufigh, Mohammad Mohsen
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.229-241
    • /
    • 2012
  • In this paper, utilizing void ratio-effective stress and void ratio-permeability relationships, a system of two nonlinear partial differential equations is derived to predict the consolidation characteristics of normally consolidated (NC) and overconsolidated (OC) soft clays subjected to cyclic loading. A developed feature of the coefficient of consolidation containing two key parameters is emerged from the differential equations. Effect of these parameters on the consolidation characteristics of soft clays is analytically discussed. It is shown that the ratios between the slopes of e-$log{\sigma}^{\prime}$ and e-log k lines in the NC and OC states play a major role in the consolidation process. In the companion paper, the critical assumptions made in the analytical discussion are experimentally verified and a numerical study is carried out in order to examine the proposed theory.

Study on Determining Consolidation Parameters of Soft Clay Ground Improved by Sand Pile (모래말뚝이 타설된 연약점토지반의 압밀정수결정에 관한 연구)

  • You, Seung-Kyong;Matsui, Tamotsu;Hong, Won-Pyo;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.264-271
    • /
    • 2005
  • Sand pile method, such as sand drain method and sand compaction pile method, has been popularly used as an improvement method for soft clay grounds. The effect of accelerating consolidation of soft clay grounds has been evaluated with Barron's solution. By the way, the consolidation behavior of soft clay ground with sand piles strongly depends on both the nonlinear mechanical interaction between sand piles and surrounding clays and the degradation permeability of clays. In this paper, the method for determining consolidation parameters of soft clay ground with sand drains by using Barron's solution was proposed, through a series of numerical simulations. Through the method, the change in both volume compressibility and permeability during consolidation was reasonably evaluated.

  • PDF

An Investigation of Dissipation Analysis for Dilatometer & New Interpretation Method (딜라토메터 소산시험 해석에 대한 고찰 및 새로운 해석법)

  • 김영상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.365-368
    • /
    • 2003
  • Despite of the simple equipment and operation, DMT has been widely used to obtain various soil parameters and those parameters have been successfully applied to geotechnical design practice. Among them, the estimation of horizontal coefficient of consolidation is so useful that many researchs recently have been carried out. However, simulation of the penetration of the DMT blade is complex due to the inherent difficulty on analyzing a plane strain deformation of the soil around blade. Therefore, empirical and semi-empirical methods that use the theoretical solution developed fur piezocone with some assumptions have been used to estimate the coefficient of consolidation from Dilatometer dissipation test. In this paper, coefficients of consolidation c$\_$h/ which were obtained using equivalent radius that is same area with the DMT blade and optimization technique are compared with those obtained from Oedometer test and other interpretation methods. It was found that a new method used in this study can give more precise horizontal coefficient of consolidation than other methods do.

  • PDF

Comparative Study on Sedimentation and Soil Characteristic of Dredged Marine Clays at Coastal Areas (해안지역별 준설점토의 침강 및 토질특성)

  • Lee, Kwang-Yeol;Hwang, Jae-Hong;Jang, Sam-Sik;Gu, Tae-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.922-929
    • /
    • 2004
  • In some port construction, a case of reclamation with dredged soil for land use can be found. Even though this is not a new technology, there are some problems on the test method and analysis. The design parameters are still remained to be solved to get accurate prediction. Sedimentation of particle and self-weight consolidation are the most important design parameters in reclamation by dredged soils. The design parameters are influenced by properties of the physical and sedimentation of dredged soils. This influencing factors can be determined depend on the history of long term sedimentation and particle characteristics. Thus, properties of the sedimentation and consolidation are varies depend on the regional geologic formation. In this paper, three different sites with different regional soil properties will be compared in design parameters of sedimentation and self-weight consolidation.

  • PDF

Study on Determining Consolidation Parameters of Soft Clay Ground improved by Sand Pile (모래말뚝이 타설된 연약점토지반의 압밀정수결정에 관한 연구)

  • You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.45-50
    • /
    • 2005
  • Sand pile method, such as sand drain method and sand compaction pile method, has been popularly used as an improved method for soft clay grounds. The effect of accelerating consolidation of soft clay grounds has been evaluated with Barren's solution. The consolidation behavior of soft clay ground with sand piles strongly depends on both the nonlinear mechanical interaction between sand piles and surrounding clays and the degradation permeability of clays. In this paper a method of determining consolidation parameters of soft clay ground with sand drains by using Barren's solution was proposed through a series of numerical simulations. Through the method, the change in both volume compressibility and permeability during consolidation was reasonably evaluated.

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit -Part I: Parameter Estimation for Analysis (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 -Part I: 해석 물성치 평가)

  • Kwak, Tae-Hoon;Lee, Chul-Ho;Lim, Jee-Hee;An, Yong-Hoon;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.13-24
    • /
    • 2011
  • The renowned Terzaghi's one-dimensional consolidation theory is not applicable to quantification of time-rate settlement for highly deformable soft clays such as dredged soil deposits. To deal with this special condition, a non-linear finite strain consolidation theory should be adopted to predict the settlement of dredged soil deposits including self-weight and surcharge-induced consolidation. It is of importance to determine the zero effective stress void ratio ($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-linear finite strain consolidation behavior for deformable dredged soil deposits. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of dredged soils. In this paper, laboratory procedures and equipments are introduced to measure such key parameters in the non-linear finite strain consolidation analysis. In addition, the non-linear finite strain consolidation parameters of the Incheon clay and kaolinite are evaluated with the aid of the proposed methods in this paper, which will be used as input parameters for the non-linear finite strain consolidation analyses being performed in the companion paper.

Analysis of Consolidation considering Uncertainties of Geotechnical Parameters and Reliability method (지반특성의 불확실성과 신뢰성 기법을 고려한 압밀해석)

  • Lee, Kyu-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.138-146
    • /
    • 2007
  • Geotechnical performance at the soft ground is strongly dependent on the properties of the soil beneath and adjacent to the structure of interest. These soil properties can be described using deterministic and/or probabilistic models. Deterministic models typically use a single discrete descriptor for the parameter of interest. Probabilistic models describe parameters by using discrete statistical descriptors or probability distribution density functions. The consolidation process depends on several uncertain parameters including the coefficients of consolidation and coefficients of permeability in vertical and horizontal directions. The implication of this uncertain parameter in the design of prefabricated vertical drains for soil improvement is discussed. A sensitivity analysis of the degree of consolidation and calculation of settlements to these uncertain parameters is presented for clayey deposits.