This study proposes a model for measuring the connectivity of nodes in road networks. The connectivity index between two nodes is characterized by the number of routes, degree of circuitousness, design speed, and route capacity between the nodes. The connectivity index of a node is then defined as the weighted average of the connectivity indexes between the node and other nodes under consideration. The weighting factor between two nodes is determined by the travel demand and distance between them. The application of the model to a toy network shows that it reasonably well quantifies the level of connectivity of nodes in the network. If flow of rail networks can be measured in the same scale as that of road networks and the capacity of rail links can be estimated, the model proposed in this paper could be applied to intermodal transportation networks as well.
Ad hoc wireless networks involving large populations of scattered communication nodes will play a key role in the development of low power, high capacity, interactive, multimedia communication networks. Such networks must support arbitrary network connections and provide coverage anywhere and anytime. This paper partitions such arbitrarily connected network architectures into three distinct groups, identifies the associated dual network architectures and counts the number of network architectures assuming there exist N network nodes. Connectivity between network nodes is characterized as a random event. Defining the link availability P as the probability that two arbitrary network nodes in an ad hoc network are directly connected, the network connection probability $ \integral_n$(p) that any two network nodes will be directly or indirectly connected is derived. The network connection probability $ \integral_n$(p) is evaluated and graphically demonstrated as a function of p and N. It is shown that ad hoc wireless networks containing a large number of network nodes possesses the same network connectivity performance as does a fixed network, i.e., for p>0, $lim_{N\to\infty} Integral_n(p)$ = 1. Furthermore, by cooperating with fixed networks, the ad hoc network connection probability is used to derive the global network connection probability for hybrid networks. These probabilities serve to characterize network connectivity performance for users of wireless ad hoc and hybrid networks, e.g., IEEE 802.11, IEEE 802.15, IEEE 1394-95, ETSI BRAN HIPERLAN, Bluetooth, wireless ATM and the world wide web (WWW).
We investigate the connectivity of fading wireless ad-hoc networks with a pair of novel connectivity metrics. Our first metric looks at the problem of connectivity relying on the outage capacity of MIMO channels. Our second metric relies on a probabilistic treatment of the symbol error rates for such channels. We relate both capacity and symbol error rates to the characteristics of the underlying communication system such as antenna configuration, modulation, coding, and signal strength measured in terms of signal-to-interference-noise-ratio. For each metric of connectivity, we also provide a simplified treatment in the case of ergodic fading channels. In each case, we assume a pair of nodes are connected if their bi-directional measure of connectivity is better than a given threshold. Our analysis relies on the central limit theorem to approximate the distribution of the combined undesired signal affecting each link of an ad-hoc network as Gaussian. Supported by our simulation results, our analysis shows that (1) a measure of connectivity purely based on signal strength is not capable of accurately capturing the connectivity phenomenon, and (2) employing multiple antenna mobile nodes improves the connectivity of fading ad-hoc networks.
We present several distributed algorithms for localizing nodes of a wireless sensor network. Our algorithms determine locations of nodes based on the connectivity between nodes. The basic idea behind our algorithms is to estimate distances between nearby nodes by counting their common neighbors. We analyze the performance of our algorithms experimentally. The results of experiments show that our algorithms achieve performance improvements upon the existing algorithms
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.12B
/
pp.1670-1679
/
2011
In the area of wireless sensor networks, sensor coverage and network connectivity problems are caused by a limited detection range and the communication distance of the nodes. To solve the coverage and connectivity problems, many studies are suggested, but most research is restricted to apply into the real environment because they didn't consider various environmental factors on wireless sensor network deployment. So in this paper, we propose a node deployment strategy considering environmental factors and the number of nodes in surveillance and reconnaissance sensor networks(SRSN). The proposed node deployment method divides the installation of the surveillance and reconnaissance sensor networks system into four steps such as identification of influences factors for node placement through IPB process, sensor node deployment based on sensing range, selection of monitoring site, and relay node deployment based on RF communication range. And it deploys the sensor nodes and relay nodes considered the features of the surveillance and reconnaissance sensor network system and environmental factors. The result of simulation indicates that the proposed node deployment method improves sensor coverage and network connectivity.
The development of USN(Ubiquitous Sensor Network) technology is creating numerous application areas. Although a network configuration with fixed sensors was the norm in the past, the coexistence of mobile and fixed sensor nodes is a new trend. Fixed sensor networks focused on the energy efficiency of nodes, but the latest studies consider guaranteeing the mobility of nodes and maintaining their connectivity, while remaining energy efficient at the same time. This paper proposes a routing protocol for a mobile ad-hoc sensor network that improves the mobility, connectivity and energy efficiency of nodes while allowing for the management and maintenance of a large number of nodes even in a complex communication environment where mobile and fixed nodes coexist. An algorithm for multi-hop multi-paths, a technique for topology reconfiguration by node movement prediction and vibration sensors, path setting for a large number of nodes, and efficient data transfer technology have been introduced to implement the modified LEAHC-AOMDV protocol. Furthermore, the excellence of this protocol was verified through a comparative experiment with the conventional LEACH protocol.
The self-organizing map (SOM) is a unsupervised learning method projecting high-dimensional data into low-dimensional nodes. It can visualize data in 2 or 3 dimensional space using the nodes and it is available to explore characteristics of data through the nodes. To understand the structure of data, cluster analysis is often used for nodes obtained from SOM. In cluster analysis, the optimal number of clusters is one of important issues. To help to determine it, various cluster validity indexes have been developed and they can be applied to clustering outcomes for nodes from SOM. However, while SOM has an advantage in that it reflects the topological properties of original data in the low-dimensional space, these indexes do not consider it. Thus, we propose a new cluster validity index for SOM based on connectivity between nodes which considers topological properties of data. The performance of the proposed index is evaluated through simulations and it is compared with various existing cluster validity indexes.
Recently, there has been a lot of research on graph-type data because it can model seamless the application domains such as GIS, network, WWW, multimedia presentations etc., and domain in which the data sequence is important. In this paper, an efficient code system, called node code system, is proposed to evaluate paths of DAG in a multimedia presentation graph. The node code system assigns a unique binary string to each node of a graph. The comparison of node codes of two nodes tells the connectivity between the nodes without actual traversal of a graph. The method using the property of the node code system allows us to construct the paths between two nodes more efficiently than the method using conventional graph traversals. The algorithms to construct paths using the node code system are provided.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.10
/
pp.5014-5034
/
2016
This paper discusses how to effectively guarantee the coverage and connectivity quality of wireless sensor networks when joint perception model is used for the nodes whose communication ranges are multi-level adjustable in the absence of position information. A Connect Coverage Algorithm Based on Joint Sensing model (CCAJS) is proposed, with which least working nodes are chosen based on probability model ensuring the coverage quality of the network. The algorithm can balance the position distribution of selected working nodes as far as possible, as well as reduce the overall energy consumption of the whole network. The simulation results show that, less working nodes are needed to ensure the coverage quality of networks using joint perception model than using the binary perception model. CCAJS can not only satisfy expected coverage quality and connectivity, but also decrease the energy consumption, thereby prolonging the network lifetime.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.1
/
pp.83-90
/
2015
This paper proposes a Tabu search algorithm to maximize the connectivity between the router nodes and the client nodes in wireless mesh networks. As the number of the router nodes and the client nodes in the networks increases, the amount of calculation for finding the solution would be too much increased. To obtain the optimal solution within a reasonable computation time for a high-density network, we propose a Tabu search algorithm to obtain the optimal solution for maximizing the connectivity. In order to make a search more efficient, we propose some efficient neighborhood generating operations of the Tabu search algorithm. We evaluate those performances through some experiments in terms of the maximum number of the connectivity and the execution time of the proposed algorithm. The comparison results show that the proposed algorithm outperforms other existing algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.