• Title/Summary/Keyword: connection strength

Search Result 971, Processing Time 0.023 seconds

TRS Network Design and Inspection by Shared Network in Subway (지하철에서의 공용망을 이용한 TRS 망 설계 및 검증에 관한 연구)

  • Kim, hak-yeoul;Kim, Seong-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.231-238
    • /
    • 2021
  • In addition to individual calls and group calls, the Trunked Radio System (TRS), which belongs to a group, can make calls simultaneously, and many users can use it within a limited time by adjusting the call time. Also, the LCX infrastructure network of the subway Most of the FM, firefighting radio, TRS of the National Police Agency and the terrestrial DMB service built in 2005 are commonly connected to the network for service and operation. In connection with the analysis, call reception sensitivity, handoff, interference with other signals, time delay, etc. were analyzed, and tests such as reception field strength for each output of the repeater and the success rate of the call terminal were conducted and the test results were analyzed. In addition, it will help TRS cell design and network construction by predicting equipment output capacity and service coverage based on test results.

Improvement in Productivity of Engine Clutch Female Flanges for Tank (전차용 엔진클러치 암플랜지 생산성 향상을 위한 연구)

  • Kim, Joong-Seon;Kwon, Dae-Kyu;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.56-62
    • /
    • 2022
  • The tank engine clutch flange constitutes a tank on which the engine and transmission of the tank are mounted. The engine clutch flange is fabricated using a difficult-to-cut material that exhibits high strength and hardness. It is difficult to process and requires considerable processing expertise. In addition, the engine clutch flange for the tank requires high machining precision because it is a system in which the connection is detachable. Because it requires high processing precision, the measurement of products equally important as processing. However, productivity is low owing to the significant amount of time required to measure each product using a three-dimensional coordinate measuring machine. Hence, this study is conducted to improve the productivity of the female tank engine clutch flange. Dedicated hobs and jigs are designed and manufactured to convert the existing end-mill cutting processing into hobbing cutting processing. An engine clutch for the tanks is manufactured using the manufactured dedicated hob and jig, and the shortening time is verified by measuring the processing time. In addition, a jig for inspection is designed and manufactured to measure the precision of the product. To verify the inspected product, the product precision is measured using a contact-type three-dimensional coordinate measuring machine and a surface roughness measuring instrument. The study confirmed that the productivity of the engine clutch flange product for tanks can be improved by simplifying the process, reducing the processing time, and simplifying product inspection.

Synthesis Of Asymmetric One-Dimensional 5-Neighbor Linear MLCA (비대칭 1차원 5-이웃 선형 MLCA의 합성)

  • Choi, Un-Sook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.333-342
    • /
    • 2022
  • Cellular Automata (CA) is a discrete and abstract computational model that is being applied in various fields. Applicable as an excellent pseudo-random sequence generator, CA has recently developed into a basic element of cryptographic systems. Several studies on CA-based stream ciphers have been conducted and it has been observed that the encryption strength increases when the radius of a CA's neighbor is increased when appropriate CA rules are used. In this paper, among CAs that can be applied as a one-dimensional pseudo-random number sequence generator (PRNG), one-dimensional 5-neighbor CAs are classified according to the connection state of their neighbors, and the ignition relationship of the characteristic polynomial is obtained. Also this paper propose a synthesis algorithm for an asymmetric 1-D linear 5-neighbor MLCA in which the radius of the neighbor is increased by 2 using the one-dimensional 3-neighbor 90/150 CA state transition matrix.

Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance (톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능)

  • Hong, Won-Kee;Nguyen, Van Tien;Nguyen, Manh Cuong;Nkundimana, Eric
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Static and fatigue performance of short group studs connector in novel post-combination steel-UHPC composite deck

  • Han Xiao;Wei Wang;Chen Xu;Sheraz Abbas;Zhiping Lin
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.659-674
    • /
    • 2024
  • Casting Ultra High-Performance Concrete (UHPC) on an orthotropic steel deck and forming a composite action by connectors could improve the steel deck fatigue performance. This study presents the mechanical performance of a proposed post-combination connection between UHPC and steel, which had a low constraint effect on UHPC shrinkage. A total of 10 push-out tests were conducted for static and fatigue performance investigations. And the test results were compared with evaluation methods in codes to verify the latter's applicability. Meanwhile, nonlinear simulation and parametric works with material damage plasticity models were also conducted for the static and fatigue failure mechanism understanding. The static and fatigue test results both showed that fractures at stud roots and surrounding local UHPC crushes were the main failure appearances. Compared with normally arranged studs, group arrangement could result in reductions of static stud shear stiffness, strength, and fatigue lives, which were about 18%, 12%, and 27%, respectively. Compared with the test results, stud shear capacity and fatigue lives evaluations based on the codes of AASHTO, Eurocode 4, JSCE and JTG D64 could be applicable in general while the safety redundancies tended to be smaller or even insufficient for group studs. The analysis results showed that arranging studs in groups caused obviously uneven strain distributions. The severer stress concentration and larger strain ranges caused the static and fatigue performance degradations of group studs. The research outcome provides a very important basis for establishing a design method of connections in the novel post-combination steel-UHPC composite deck.

Evaluation of Bending Creep Performance of Laminated Veneer Lumber (LVL) Formwork for the Design of Timber Concrete Composite (TCC) Structures

  • Hyun Bae KIM;Takuyuki YOSHIOKA;Kazuhiko FUJITA;Jun ITO;Haruka NOHARA;Keiji NOHARA;Toshiki NARITA;Wonwoo LEE;Arata HOSOKAWA;Tetsuiji TANAKA
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.375-382
    • /
    • 2024
  • The study focuses on evaluating the bending creep performance of laminated veneer lumber (LVL) formwork in timber concrete composite (TCC) structures. Timber-framed construction is highlighted for its environmental benefits and seismic resistance, but limitations such as poor tensile strength and brittle failure in bending hinder its use in high-rise buildings. Wood-concrete hybrid structures, particularly those using reinforced concrete slabs with TCC floors, emerge as a potential solution. The research aims to understand the time-dependent behavior of TCC components, considering factors like wood and concrete shrinkage and connection creep. The experiment was conducted in western Japan on the TCC floor designed for use in the Kama-city Inatsuki-higashi compulsory education school. The LVL formwork, measuring 9,000 mm by 900 mm, and concrete is loaded onto it for testing. The creep test periods are examined using concrete loading. It employs a comprehensive creep analysis, adhering to Japanese standards, involving deflection measurements and regression analysis to estimate the creep coefficient. Results indicate substantial deformation after shoring removal, suggesting potential reinforcement needs. The study recommends extending test periods for improved accuracy and recognizing regional climate impacts. Overall, the research provides valuable insights into the potential of LVL formwork in TCC structures, emphasizing safety considerations and paving the way for further experimentation under varied conditions to validate structural integrity.

Korean Ancestor Worship: An Analytical Psychological Consideration for Confucian Ancestor Worship, Gijesa (한국인의 조상숭배에 대한 분석심리학적 고찰: 기제사를 중심으로)

  • Seungsub Lee
    • Sim-seong Yeon-gu
    • /
    • v.39 no.1
    • /
    • pp.92-128
    • /
    • 2024
  • This study examines Gijesa, a Korean tradition of memorial worship for departed ancestors, from the perspective of analytical psychology. To understand the psychological background of ancestral rites, a literature search was conducted to examine the basis for ancestral spirits, the objects of ancestral rites, the symbolic meaning of the customs and practice of Gijesa, and the contents of volume 3 of the book Jhuza-uryu about 'Ghosts and Ancestral Rituals'. Gijesa, the Korean ancestor worship, may appear as a complicated formal ritual, but it reveals a psychological phenomenon of individuation. Gijesa facilitates a conversation between descendants and ancestors, bridging the conscious and the unconscious, leading to a realization of totality. The creative aspect of spirit worship lies in the 'realization of the individuation process' in that it fosters a connection with the collective unconscious, the root of consciousness. When an individual develops into a new integrated personality, we could gain strength from the support of ancestors, the support of the unconscious. The relationship with the spirits of ancestors is essential because consciousness has an important relationship with its root, the collective unconscious, especially for those of us living in an era of chaos where the fundamental meaning of human existence is lost due to rationalism and materialism.

An Optimum Design of Steel Frames by Second Order Elastic Analysis (2차 탄성해석법에 의한 강뼈대 구조물의 최적설계)

  • Park, Moon-Ho;Jang, Chun-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2006
  • The main objective of this study is to develop an optimization algorithm of framed structures with rigid and various semi-rigid connections using the multilevel dynamic programming and the sequential unconstrained minimization techniques (SUMT). The second-order elastic analysis is performed for steel framed structures. The second order elastic analysis is developed based on nonlinear beam-column theory considering the bowing effect. The following semi-rigid connections are considered; double web angle, top-seat angle and top-seat angle with web angle. We considered the three connection models, such as modified exponential, polynomial and three parameter model. The total weight of the structural steel is used as the objective function in the optimization process. The dimensions of steel cross section are selected as the design variables. The design constraints consist of strength requirements for axial, shear and flexural resistance and serviceability requirements.

An Experimental Study on Punching Shear at the Connection of RC Column Constrained by H-Beam with 井 Shape (정(井)자형 H형강으로 구속된 철근콘크리트 기둥접합부의 뚫림전단에 관한 실험적 연구)

  • Kim, Lyang-Woon;Lee, Soo-Kueon;Lee, Jung-Yoon;Chung, Chang-Yong;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.319-326
    • /
    • 2009
  • Two parallel wide flange built-up beams are widely used as struts in resisting lateral earth pressure because of the effectiveness in structure and construction. In a certain structural system, the reinforced concrete columns are to be placed at the intersection where two perpendicular beams cross each other, the square part of the joint being filled with concrete. In the punching shear mechanism of the beam-column joint, the radial deformation caused due to shear cracking will be constrained by the spring action of the squarely encompassed beam flanges. As a result, the punching shear strength of the joint concrete can be expected to be increased. To verify this phenomenon experiments have been performed for various constraining elements and distances between columns and constraints. Test results are compared with the approximation analysis formula which has been proposed in this study, based on the code formula. The results calculated by the proposed equation show comparatively close agreement with the punching shear strength detected from the test.