• Title/Summary/Keyword: connecting rod

Search Result 124, Processing Time 0.034 seconds

Wear Analysis at the Interface of Connecting-Rod Small-End Bushing and Piston-Pin Boss with a Floating Piston-Pin at Constant Angular Velocity during Engine Firing (엔진 파이어링동안 일정 축 각속도에서 비고정식 피스톤-핀과 연결봉-소단부 부싱 및 피스톤-핀 보스의 접촉면 마모해석)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.168-192
    • /
    • 2020
  • In recently designed diesel engines, the running conditions for piston-pin bearings have become severe because of the higher combustion pressure and increased temperature. Moreover, the metal removal from the bushing material has strongly reduced the ability of the antifriction material to accept asperity contacts. Therefore, it is necessary to find ways of reducing wear scar on the connecting-rod small-end bushing and piston-pin boss bearing related to the higher combustion pressure on the power cell of an engine. In this work, the position and level of material removal from the surfaces of the bushing and bearing under such severe operating conditions - for example, maximum power and torque conditions of a passenger car diesel engine - are estimated for several combinations of surface roughness. First, piston-pin rotating motion is investigated by calculating the friction coefficient at piston-pin bearings, the oil film thickness, and the frictional torques induced by hydrodynamic shear stress. Subsequently, the wear scarring on the surfaces of a connecting-rod small-end bushing and two piston-pin boss bearings related to piston-pin rotational motion is numerically calculated under the maximum power and torque operating conditions. This work is helpful to determine the reasonable surface roughness of the bushing and bearing for reducing wear volume occurring at the interface between a bearing and a shaft.

A Study on the Improvement of Connection for Shield Tunnel Lining Using Trapezoidal Segments (쉴드터널 라이닝 사다리꼴 세그먼트의 연결방법 개선에 관한 연구)

  • 정형식;김도열;김정수
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.251-262
    • /
    • 1999
  • The assemblage of the trapezoidal segments, which is being used increasingly to shield tunnelling, with Guide rod and Dowel forms tunnel lining. In this case the larger the taper angle of trapezoidal segment is, the easier the assembly work becomes. The large angle can reduce the water proof material's phenomenon of being pushed back, but decreases the structural safety in connecting section of tunnel lining. In this paper a 3-dimensional numerical analysis was performed to estimate the exact behavior of a model shield tunnel made by connecting 3-dimensionally various accessories with irregular sectioned segments. We obtained the operating force of connecting section according to the change of taper angle of trapezoidal segment and sought for improved scheme for connecting section by comparing and analyzing the test results on the friction resistance force of connecting parts.

  • PDF

Experimental Research of Powder Forging for Sub-Scale Connecting rods (커넥팅 로드의 분말단조를 위한 소결 및 단조특성의 실험적 연구)

  • 이동원;이정환;정형식;이영선;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.149-158
    • /
    • 1994
  • Powder forged Connecting Rods have become attractive for use in automotive engines. The powder forging process offers beneficial material utilization as well as the minimization of finishing operations over that of conventionally forged rods. In the present work, the sintering behavior of Fe-2Cu-0.6C, optimum preform design and forgeability of various forging variables were investigated. Our data were generated using a newly proposed sub-scale con-rod developed specifically to simulate the powder forging process. We obtain optimum condition of sintering and powder forging process.

  • PDF

Reliability Analysis in Fatigue Strength of Connecting Rod (커넥팅 로드의 피로강도에 대한 신뢰성 해석)

  • Kim, Cheol-Su;Lee, Jun-Hyeong;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1651-1658
    • /
    • 2001
  • It is necessary to evaluate fatigue strength and reliability of the connecting rod which is core part in automotive engine to assure the high level of durability of automobile. For this purpose, the loading conditions in automotive engine is obtained by the dynamic analysis. Based on these results, the critical section was identified by the finite element analysis. The fatigue strength under constant amplitude was evaluated and the mean of the fatigue limit at R = -2.27 derived from the staircase method was 311.2MPa. And the failure probability( F$\sub$p/ ) derived from the strength-stress interference model is 0.0003% at the 99.99% confidence level and the mean factor of safety was 4.2.

Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM (FEM을 이용한 왕복동 공기압축기의 피스톤 및 커넥팅로드의 구조해석)

  • Pham, Minh-Ngoc;Yang, Chang-Jo;Kim, Jun-Ho;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • In a reciprocating compressor, the piston and connecting rod are important parts. Excess mechanical stress on these parts may cause damage, and broken parts are expensive and difficult to replace. Therefore, it is necessary to analyze the mechanical stress affecting durability and longevity. The main purpose of this study was to identify locations of maximum stress on pistons and connecting rods. Based on dynamic calculation of the working process of a specific air compressor, an analysis of piston and connecting rod performance has been completed. A three-dimensional model for the air compressor's pistons and connecting rods was built separately, and FEM analysis of these components was carried out using a numerical method. The pistons were loaded by pressure which was changed according to crankshaft angle without thermal boundary conditions. The simulation results were used to predict and estimate stress concentration as well as the value of this stress on pistons and connecting rods. The maximum equivalent stress calculated are over 190 MPa on pistons and 123 MPa on connecting rods at crank angle $135^{\circ}$ and $225^{\circ}$ but these are under tensile yield strength. Besides, the calculated safety factors of connecting rods and pistons is higher than 1. Moreover, the results obtained can be used to provide manufacturers with references to optimize the design of pistons and connecting rods for reciprocating compressors.

Failure Analysis by Fracture Study of Connecting Rod Bolts in Diesel Engine for Military Tracked Vehicles (군용 궤도차량 디젤엔진의 커넥팅 로드 볼트 파손 검토를 통한 고장원인분석)

  • Oh, Dae San;Kim, Ji Hoon;Seo, Suk Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.191-200
    • /
    • 2020
  • Tracked military vehicles are operated under harsher conditions and climates than ordinary vehicles, and the components require high degrees of reliability and durability. A diesel engine is the main power generator, and when the vehicle breaks down, there is a high possibility of causing a large-scale accident. Therefore, analyzing the cause of engine failure can be important for preventing similar cases that may occur. In this study, we clarified the mechanism of engine failure according to an overhaul test, hardness measurement, and an analysis of the fracture surface. The overhaul test confirmed that a bolt was separated from the connecting rod (number 4). In addition, the hardness measurement results of the connecting rod bolt conformed to the standard, and it was found that the bolt fracture was ductile fracture through an analysis of the fracture surface. Based on the results, it was concluded that damage to a diesel engine of a tracked military vehicle was caused by separating and damage caused by loosening of the connecting rod bolts, resulting in cascading damage. The results of the study could be used as reference examples and could be useful for another study on engine failure analysis.

The Effects of MoS2 Addition on the Mechanical Properties of Fe-Cr-Mn-C-V P/M Alloy (MoS2 첨가에 따른 Fe-Cr-Mn-C-V계 소결합금의 기계적 특성 평가)

  • Kim, Geon-Hong;Yang, Hyun Seok;Kong, Man-Sik
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.294-300
    • /
    • 2014
  • The connecting rod is one of the most important parts in automotive engines, transforming the reciprocal motion of a piston generated by internal combustion into the rotational motion of a crankshaft. Recent advances in high performance automobile engines demand corresponding technological breakthroughs in the materials for engine parts. In the present research, the powder metallurgy (P/M) process was used to replace conventional quenching and/or tempering processes for mass production and ultimately for more cost-efficient manufacturing of high strength connecting rods. The development of P/M alloy powder was undertaken not only to achieve the improvement in mechanical properties, but also to enhance the machinability of the P/M processed connecting rods. Specifically $MoS_2$ powders were added as lubricants to non-normalizing Fe-Cr-Mn-V-C alloy powder to improve the post-sintering machinability. The effects of $MoS_2$ addition on the microstructure, mechanical properties, and machining characteristics were investigated.

Analyses of Earth Surface Potentials Depending on Soil Structures (대지구조에 따른 대지표면전위의 분석)

  • Lee, Bok-Hee;Baek, Young-Hwan;Jung, Hyun-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1796-1801
    • /
    • 2007
  • This paper presents electric potential rise on the surface of the earth due to ground currents. It is the aim of this paper to propose fundamental data relevant to the earth surface potentials depending on the soil structures. The earth potential rise, touch and step voltages in the immediate vicinity of the ground rod of a distribution pole were measured and analyzed. The results described in this paper are based on laboratory measurements which were intended to simulate conditions existing in actual installations. As a result, the earth surface potential rise, touch and step voltages strongly depend on the soil structure. The highest earth surface potential occurred in the vicinity of the top of ground rod. When the ground rod was installed in the distance range of $1{\sim}1.5\;m$ from distribution pole, the highest touch voltages appeared near the place of 1 m on the straight line connecting the distribution pole to ground rod.

A Study on the Measurement of Oil-Film Pressure in Engine Connecting Rod Bearing and Piston Pin-Boss by Thin-Film Sensor

  • Mihara, Yuji;Someya, Tsuneo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.409-410
    • /
    • 2002
  • In order to measure the oil-film pressure in sliding surface of machinery, we have developed a piezo-resistive type thin-film pressure sensor. To reduce the measurement error due to temperature and strain, the constituent of the pressure sensitive alloy was optimized and a new sensor shape was devised. In this study, we present the measurement results of the oil-film pressure distribution in engine connecting rod big-end bearing and piston pin- bosses with 3 different pin-boss shapes using the newly developed thin-film pressure sensor.

  • PDF

The study on the friction characteristics of spherical hydrostatic bearing for hydraulic piston motor (유압모터 구면 정압베어링의 마찰특성에 관한 연구)

  • 함영복;최영호;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.647-650
    • /
    • 2001
  • In case of bent axis type axial piston hydraulic pump or motor, hydrostatic bearing used to achieve the lubrication effect on the mechanical sliding contact areas between the following pairs ; piston shoe and swash plate, valve plate and cylinder block, piston and cylinder block, etc. In this research, we designed two pairs of spherical ball joint in witch connecting rod piston end. The one is not hydrostatic bearing, the other is designed with spherical hydrostatic bearing in point of view minimum pumping power loss. By varying supply pressure on the piston, we can know that it is possible to reduce the friction torque by using hydrostatic bearing designed one. Finally, by comparing the results of driving torque between the two models, it was verified that the spherical hydrostatic bearing is well designed.

  • PDF