• Title/Summary/Keyword: connected buildings

Search Result 238, Processing Time 0.023 seconds

Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds

  • Farghaly, Ahmed Abdelraheem
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1293-1309
    • /
    • 2015
  • 3D two adjacent buildings with different heights founded in different kinds of soil connected with viscous dampers groups, with especial arrangement in plane, were investigated. Soil structure interaction for three different kinds of soil (stiff, medium and soft) were modeled as 3D Winkler model to give the realistic behavior of adjacent buildings connected with viscous dampers under various earthquake excitations taking in the account the effect of different kinds of soil beneath the buildings, using SAP2000n to model the whole system. A range of soil properties and soil damping characteristics are chosen which gives broad picture of connected structures system behavior resulted from the influence soil-structure interaction. Its conclusion that the response of connected structures system founded on soft soil are more critical than those founded on stiff soil. The behavior of connected structures is different from those with fixed base bigger by nearly 20%, and the efficiency of viscous dampers connecting the two adjacent buildings is reduced by nearly 25% less than those founded on stiff soil.

Integrated Optimal Design of Smart Connective Control System and Connected Buildings (스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

Efficient Dynamic Analysis of High-rise Buildings Having Belt Walls Connected by a Sky-Bridge (스카이브릿지로 연결된 벨트월이 있는 고층건물의 효율적인 동적해석)

  • Lee, Dong-Guen;Kim, Hyun-Su;Yang, Ah-Ram;Ko, Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.231-242
    • /
    • 2009
  • In the design of a sky-bridge, repetitive boundary nonlinear time history analyses are required to accurately predict dynamic behaviors of the connected buildings because the connection systems of a sky-bridge usually have high nonlinearity. If a conventional finite element model for entire high-rise buildings is used for repetitive boundary nonlinear time history analyses, computational efforts could be significant. In this study, an equivalent cantilever model considering the belt-wall effect has been proposed for an efficient dynamic analysis and a performance evaluation of vibration control of high-rise buildings connected by a sky-bridge. To verify the accuracy and efficiency of the proposed equivalent model, boundary nonlinear time history analyses of 49- and 42-story example buildings connected by a sky-bridge have been performed for wind excitation. Based on the analytical results, it has been verified that the proposed equivalent model can provide accurate dynamic responses of building structures connected by a sky-bridge with significantly reduced computational efforts.

Performance Evaluation of Vibration Control of Adjacent Buildings According to Installation Location of MR damper (인접건축물의 진동제어를 위한 MR감쇠기의 위치 선정에 관한 연구)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • In recently, the vibration control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. MR dampers can be controlled with small power supplies and the dynamic range of this damping force is quite large. This MR damper is one of semi-active dampers as a new class of smart dampers. In this study, vibration control effect according to the installation location of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Groundhook control model is applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement responses can be effectively controlled as adjacent buildings are connected at roof floors by MR damper. And acceleration responses can be effectively reduced when two buildings are connected at the mid-stories of adjacent buildings by MR damper. Therefore, the installation floor of the MR damper should be selected with seismic response control target.

Wind load effects and equivalent static wind loads of three-tower connected tall buildings based on wind tunnel tests

  • Ke, Shitang;Wang, Hao;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.967-988
    • /
    • 2016
  • Due to the significant aerodynamic interference from sub-towers and surrounding tall buildings, the wind loads and dynamic responses on main tower of three-tower connected tall building typically change especially compared with those on the isolated single tall building. This paper addresses the wind load effects and equivalent static wind loads (ESWLs) of three-tower connected tall building based on measured synchronous surface pressures in a wind tunnel. The variations of the global shape coefficients and extremum wind loads of main tower structure with or without interference effect under different wind directions are studied, pointing out the deficiency of the traditional wind loads based on the load codes for the three-tower connected tall building. The ESWLs calculation method based on elastic restoring forces is proposed, which completely contains the quasi-static item, inertia item and the coupled effect between them. Then the wind-induced displacement and acceleration responses for main tower of three-tower connected tall building in the horizontal and torsional directions are investigated, subsequently the structural basal and floor ESWLs under different return periods, wind directions and damping ratios are studied. Finally, the action mechanism of interference effect on structural wind effects is investigated. Main conclusions can provide a sientific basis for the wind-resistant design of such three-tower connected tall building.

Design of Supertall Structures with Connected Towers the Structural Solution to the Development of Sky Cities

  • Wenwei, Jiang;Qi, Yu;Lianjin, Bao;Mingguo, Liu;Jun, Ji;Dasui, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.211-220
    • /
    • 2019
  • Three cases of supertall connected structures are presented and each of them represents a quite style. The first case is a strong-connected structure. The coupling function of towers and connector contributes a lot to the structural stiffness and stability. Its special construction scheme had great impact on the construction quality and the structural safety, and must be accurately considered. For the second case which is a weak-connected structure, the influences of different connecting modes to the structural dynamic characteristic were explained. Then the combined bearings were proposed to achieve the design presume. In the third case which represents the multi-supported structures, the structural distinctive mechanical properties were discussed. For the structural state during construction process is quite different from that in final service condition, two construction procedures were simulated to get an optimal one. Although there are great challenges to designers, the advantages of the supertall connected buildings are obvious. Further work is needed in this area to adapt to the development of future cities.

Reinforced concrete core-walls connected by a bridge with buckling restrained braces subjected to seismic loads

  • Beiraghi, Hamid
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • Deflection control in tall buildings is a challenging issue. Connecting of the towers is an interesting idea for architects as well as structural engineers. In this paper, two reinforced concrete core-wall towers are connected by a truss bridge with buckling restrained braces. The buildings are 40 and 60-story. The effect of the location of the bridge is investigated. Response spectrum analysis of the linear models is used to obtain the design demands and the systems are designed according to the reliable codes. Then, nonlinear time history analysis at maximum considered earthquake is performed to assess the seismic responses of the systems subjected to far-field and near-field record sets. Fiber elements are used for the reinforced concrete walls. On average, the inter-story drift ratio demand will be minimized when the bridge is approximately located at a height equal to 0.825 times the total height of the building. Besides, because of whipping effects, maximum roof acceleration demand is approximately two times the peak ground acceleration. Plasticity extends near the base and also in major areas of the walls subjected to the seismic loads.

Wind-induced response of structurally coupled twin tall buildings

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.383-398
    • /
    • 2007
  • The paper describes a study of the effects of structural coupling on the wind-induced response of twin tall buildings connected by a skybridge. Development of a dual high-frequency force balance used in wind tunnel investigation and background information on the methodology employed in analysis are presented. Comparisons of the wind-induced building response (rooftop acceleration) of structurally coupled and uncoupled twin buildings are provided and the influence of structural coupling is assessed. It is found that the adverse aerodynamic interference effects caused by close proximity of the buildings can be significantly reduced by the coupling. Neglecting of such interactions may lead to excessively conservative estimates of the wind-induced response of the buildings. The presented findings suggest that structural coupling should be included in wind-resistant design of twin tall buildings.

Application of MR damper for Vibration Control of Adjacent Buildings (인접건축물의 진동제어를 위한 MR감쇠기의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.99-108
    • /
    • 2012
  • In recently, sky-bridge are often applied to high-rised adjacent buildings for pedestrian bridge. the seisnic response control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. In this study, vibration control effect of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Two typed of control methods, displacement based or velocity based, are applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement-based control algorithm is more effective than velocity-based control algorithm for seismic response control of adjacent buildings. And, when displacement-based control method is applied to control of adjacent buildings, the control of building occurred large displacement is more efficient in reducing the seismic response.

Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations

  • Hadidi, Ali;Azar, Bahman Farahmand;Rafiee, Amin
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.701-721
    • /
    • 2016
  • Base isolation is a well-established passive strategy for seismic response control of buildings. In this paper, an efficient framework is proposed for reliability-based design optimization (RBDO) of isolated buildings subjected to uncertain earthquakes. The framework uses reduced function evaluations method, as an efficient tool for structural reliability analysis, and an efficient optimization algorithm for optimal structural design. The probability of failure is calculated considering excessive base displacement, superstructure inter-storey drifts, member stress ratios and absolute accelerations of floors of the isolated building as failure events. The behavior of rubber bearing isolators is modeled using nonlinear hysteretic model and the variability of future earthquakes is modeled by applying a probabilistic approach. The effects of pulse component of stochastic near-fault ground motions, fixity-factor of semi-rigid beam-to-column connections, values of isolator parameters, earthquake magnitude and epicentral distance on the performance and safety of semi-rigidly connected base-isolated steel framed buildings are studied. Suitable RBDO examples are solved to illustrate the results of investigations.