• Title/Summary/Keyword: coniferous forests

Search Result 182, Processing Time 0.022 seconds

Assessment of Forest Vegetation Effect on Water Balance in a Watershed (산림식생에 따른 유역 물수지 영향 평가)

  • Kim, Chu- Gyum;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.737-744
    • /
    • 2004
  • In this study, to evaluate the effect of forest vegetation on the long-term water balance in a watershed, semi-distributed and physically based parameter model, SWAT was applied to the Bocheong watershed, and the variation of hydrological components such as evapotranspiration, surface flow, lateral flow, base flow, and total runoff was investigated with coniferous and deciduous forests, respectively. First, SWAT model was modified to simulate the actual plant growth pattern of coniferous trees which have the uniform value of leaf area index all the seasons of the year. The modified model was applied to the watershed that is assumed to have only one land cover in the whole watershed, and the variation of the water balance components was investigated for each land cover. It was found that coniferous forest affected the increase in evapotranspiration and decrease in runoff more than deciduous forest. However, the age and the density of stand, the location, and soil characteristics and meteorological conditions including the tree species should be also considered to examine the effect more quantitatively and to reduce the uncertainties in simulated output from the hydrological model.

Changes in Temperature and Humidity in the Forest Caused by Development (도로에 의한 산림 내 온습도 변화)

  • Choi, Jaeyong;Park, Myung-Soo;Kim, Su-Kyung;Yu, Seung-Hyeon;Choi, Won-Tae;Song, Wonkyong;Kim, Whee-Moon;Kim, Seoung-Yeal;Lee, Ji-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.604-617
    • /
    • 2018
  • As the depletion of forests became more widespread due to the increase in the number of roads, the research was conducted on the relationship between temperature and humidity in the forests, assuming that the forests around the roads were affected. Through the forest monitoring, the temperature and humidity of coniferous forests and broadleaf forests in Sedong and Gongju areas were observed at three point of 10m, 20m and 30m from the road boundary to the inside of the forest, respectively. In Yeongdong area, for more reliable results, it was observed from the point of 0m, 10m, and 20m. During the study period, so it was expected the change in tree growth was small, the change of temperature and humidity inside the forest by the road was compared with the temperature and humidity from the road to the inside of the forest from September 2017 to January 2018, the changes of temperature and humidity inside the forest due to linear development such as roads were quantitatively analyzed. Using the HOBO data logger (MX2301, Onset Corp.), the temperature and humidity changes of each site were measured, and the average of the changes have been analyzed monthly. In the case of Gongju coniferous forests in September 2017, the average weekly temperature is $0.57^{\circ}C$ higher than the forest outside from the forest boundary and $1.23^{\circ}C$ higher than the inside of the forest, at night in November 2017, in Sedong broadleaf forests. That is, the ability to control the temperature and humidity of the forests along the road was larger and less variable as the distance from the road boundary to the inside of the forest increased. In this study, it is considered that the high degree of change in temperature and humidity of the forest and the surrounding area due to artificial linear development such as roads will affect the growth of trees. This results could serve as a basis for studying the quantitative scope of linear development affecting forest growth and for managing forest change caused by linear development.

Effect of Forest Growth and Thinning on the Long-term Water Balance in a Coniferous Forest (침엽수인공림에서 임분 성장 및 간벌이 장기 물수지에 미치는 영향)

  • Choi, Hyung-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • Long-term annual water balances are analyzed for two forest catchments located in Gwangneung covered with forests of different types and ages. The water balance trends of the two catchments from 1982 to 2009 are compared to identify the effect of forest growth and thinning on the water balance in a planted coniferous forest catchment. According to the averaged annual precipitation and runoff for the four designated periods from 1982 to 2009, the water balance of the old natural broad-leaved forest catchment (GB) remained relatively unchanged. In contrast, the young planted coniferous forest catchment (GC) showed significant changes in the water balance due to the forest growing and thinning. The results showed that the catchment runoff decreases with increasing tree age whereas the forest thinning results in an increase in catchment runoff. The mean annual runoff from the catchment GC after thinning increased by 1.7 times, compared with the mean annual runoff before forest thinning. The mean annual runoff from the catchment GB was very stable throughout the period. However, such an effect of forest thinning appeared to last only for about 10 year-period, after which the water yield increment in the catchment GC disappeared. It indicates that the proper forest management should be reconsidered at the interval of 10 years to effectively reduce water loss and increase water yield in the planted coniferous forest.

Effect on the Temperature in Forest Dominant Vegetation Change (산림 우점식생 변화가 온도에 미치는 영향)

  • An, Mi-Yeon;Hong, Suk-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • This study investigated the effect of forest type changes in Daegu, the hottest city in Korea, on the land surface temperature (LST). The LST change by forest type was analyzed by 2scene of Landsat TM image from 1990 to 2007. The land cover types were classified into 4 types; forest areas, urban areas, cultivated areas and other areas, and water areas. The forest areas were further classified into the coniferous tree areas and the broadleaf tree areas. The result of the statistical analysis of the LST change according to the forest type showed that the LST increased when the forest was changed to the urban area. The LST increased by about $0.6^{\circ}C$ when a broadleaf tree area was changed to an urban area and about $0.2^{\circ}C$ when a coniferous tree area was changed to an urban area. This was the temperature change as the result of the simple type change for 17 years. The temperature change was larger when considering both cases of the forest type being retained and changed. The LST increased by $2.3^{\circ}C$ more when the broadleaf tree areas were changed to the urban areas than when broadleaf trees were maintained. The LST increased by $1.9^{\circ}C$ more when the coniferous tree areas were changed to the urban areas than when the coniferous tree areas were maintained. The LST increased by $0.4^{\circ}C$ more when the broadleaf tree areas were destroyed than when the coniferous tree areas were destroyed. The results confirmed that the protection of broadleaf trees in urban forests was more effective for mitigating climate change.

Community Analysis of Oribatid Mites(Acari: Oribatida) in Namsan and Kwangreung Coniferous Forests (남산과 광릉 침엽수림의 날개응애 군집분석)

  • 박홍현;이준호
    • Korean journal of applied entomology
    • /
    • v.39 no.1
    • /
    • pp.31-41
    • /
    • 2000
  • Community analysis of oribatid mites was conducted in Namsan and Kwangreung coniferous forests which have been received by different degrees of environmental pressures through urbanization processes. Oribatid mites were sampled in the litter and soil layer of study sites from May 1993 to October 1994. Although two sites have been under similar weather condition, seasonal changes in oribatid mites density did not show a synchronized pattern. Density in spring and summer showed stable pattern with low fluctuations, but unstable pattern in autumn between 1993 and 1994. And these patterns were highly correlated with precipitation. The density and species number were higher in the litter layer than in the soil layer and showed no typical seasonal changes. The dominant species were Scheloribates latipes (1 l.78%), Pergalumna altera (8.92%), Eohypochthonius crassisetiger (7.58%), Scheloribates sp. (6.89%) and Suctobelbella yezoensis (5.04%) in Namsan, and Ceratozetes japonicus (25.72%), Punctoribates punctum (14.15%), Trichogalumna nipponica (10.96%) and Ramusella sengbuschi (5.08%) in Kwangreung. The number of species with high constany were 10 and 18 in Namsan and Kwangreung, respectively. Namsan showed the feature of urban forests. In analysis of species diversity, species richness was significantly higher in Kwangreung than in Namsan, while shannon (H') and evenness index (J') were higher in Namsan than in Kwangreung. The values of shannon index (H') in Namsan and Kwangreugn were 2.83 and 2.62, respectively and evenness index (J') were 0.78 and 0.67, respectively. The value of similarity index between two sites was 0.68.

  • PDF

Detection of Rhizina undulata in Soil by Nested-PCR Using rDNA ITS-specific Primer

  • Lee, Sun Keun;Lee, Jong Kyu;Lee, Seung Kyu;Kim, Kyung Hee;Lee, Sang Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.585-590
    • /
    • 2007
  • Rhizina undulata is the fungus, which causes Rhizina root rot on coniferous trees. Nested-PCR using ITS-specific primer was applied to detect R. undulata from the soils of Japanese black pine (Pinus thunbergil) forests infested with the disease in Seocheon, Chungnam Province, South Korea. Soil samples were collected from four different sites, both dead trees and fruit bodies of R. undulata were present, dead trees only present, fruit bodies only present, and both were absent. Nested-PCR products specific to R. undulata ITS-region were amplified. Positive reactions were found in some samples from the sites, where dead trees and fruit bodies of R. undulata were absent as well as where both of those were present. R. undulata was mainly detected in the soil samples from the depth of 5~20 cm under the soil surface. These results show that the nested-PCR could be used to diagnose the presence or potential infestation of R. undulata in the soils of pine forests.

Analysis of forest types and stand structures over Korean peninsula Using NOAA/AVHRR data

  • Lee, Seung-Ho;Kim, Cheol-Min;Oh, Dong-Ha
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.386-389
    • /
    • 1999
  • In this study, visible and near infrared channels of NOAA/AVHRR data were used to classify land use and vegetation types over Korean peninsula. Analyzing forest stand structures and prediction of forest productivity using satellite data were also reviewed. Land use and land cover classification was made by unsupervised clustering methods. After monthly Normalized Difference Vegetation Index (NDVI) composite images were derived from April to November 1998, the derived composite images were used as temporal feature vector's in this clustering analysis. Visually interpreted, the classification result was satisfactory in overall for it matched well with the general land cover patterns. But subclassification of forests into coniferous, deciduous, and mixed forests were much confused due to the effects of low ground resolution of AVHRR data and without defined classification scheme. To investigate into the forest stand structures, digital forest type maps were used as an ancillary data. Forest type maps, which were compiled and digitalized by Forestry Research Institute, were registered to AVHRR image coordinates. Two data sets were compared and percent forest cover over whole region was estimated by multiple regression analysis. Using this method, other forest stand structure characteristics within the primary data pixels are expected to be extracted and estimated.

  • PDF

Atmospheric Quality, Soil Acidification and Tree Decline in Three Korean Red Pine Forests

  • Lee, Choong-Hwa;Lee, Seung-Woo;Kim, Young-Kul;Cho, Jae-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.26 no.2
    • /
    • pp.87-89
    • /
    • 2003
  • Although a forest damage of large area due to air pollution has not yet been found in Korea, declines of Korean red pine (Pinus densiflora Sieb. et Zucc.), the most common coniferous species, have been locally reported. To evaluate the effect of air pollution and acid deposition on the forests, SO$_2$ concentration, acid load, soil pH and tree decline were monitored for 13 years from 1988 to 2001 in Namsan, Doowang and Gyebangsan with the gradient of air pollution. During the study period, annual mean SO$_2$ concentration in Namsan, Doowang and Gyebangsan were 14 ppb, 13 ppb and 6 ppb, respectively. Annual mean acid loads in Namsan and Doowang were three to four times more than that in Gyebangsan. As respected, forest surface soils in Namsan and Doowang were acidified to pH 4.1 and 4.3, whereas that in Gyebangsan showed normal value as pH 5.4. On the other hand, decline degrees of Korean red pines in Namsan and Doowang in both 1996 and 2001 were higher than those in Gyebangsan. It is reasonable that the severer tree declines in Namsan and Doowang could be closely related with the higher air pollution, acid load, and the effects (possibly Ca deficit and Al toxicity) of soil acidification.

Understanding Forest Status of the Korean Peninsula in 1910: A Focus on Digitization of Joseonimyabunpodo (The Korean Peninsula Forest Distribution Map) (1910년 한반도 산림의 이해: 조선임야분포도의 수치화를 중심으로)

  • Bae, Jae Soo;Kim, Eun-Sook
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.418-428
    • /
    • 2019
  • The purpose of this study was to analyze and clarify the forest information shown in the Korean Peninsula Forest Distribution Map (KPFDM) printed in 1910. First, the background, process, results, and reliability of the Forest Survey Project (1910), which is the basis of the KPFDM, were evaluated. Next, the information of the KPFDM, preserved as a paper map, was digitized to show forest status and forest type. The results of the analysis can be summarized as follows: Analyzing the Korean peninsula of the 1910 period in terms of the present South and North Korean regions, stocked forests were found to be more widely distributed (73%) in the northern region. The southern region largely consisted of deforested areas, with young-growth trees and unstocked forests making up 80% of all forests there. The northern region had abundant natural forests, with 80% of the forests in Yanggang-do, which currently includes Mt. Baekdu and the Hyesan area, composed of stocked forests. Pinus densiflora was found about 2.7 times more often in the southern region than in the northern region. Large numbers of coniferous trees excluding Pinus densiflora were found in the northern region. In particular, 53% of the forests and 72% of the stocking land in the southern region were composed of Pinus densiflora.

A Study on the Recovery Rate of Vegetation in Forest Fire Damage Areas Using Sentinel-2B Satellite Images (Sentinel-2B 위성 영상을 활용한 산불 피해지역 식생 회복률에 관한 연구)

  • Gumsung Cheon;Kwangil Cheon;Byung Bae Park
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.463-472
    • /
    • 2023
  • The amount of damage and the area of damage to forest fires are increasing globally, and the effectiveness analysis of the restoration method after the damage is performed insufficient. This study calculated the area of forest fire damage was calculated using Sentinel-2B satellite images and stack map and the intensity of forest fire damage is analyzed according to the forest type. In addition, the vegetation index was calculated using various wavelength bands. Based on the results, the vegetation resilience by the restoration method was quantitatively. As results, areas with a high proportion of coniferous forests suffered high intensity forest fire damage, and areas with a relatively high ratio of mixed and broad-leaved forests tended to have low forest fire damage. Also, artificial forests showed a recovery of about 92.7% compared to before forest fires and natural forests showed a recovery of about 99.6% from the result of analyzing vegetation resilience in artificial and natural forests after forest fires. Accordingly, it was confirmed that natural forests after forest fire damage had superior vegetation resilience compared to artificial forests. It can be proposed that this study is meaningful in providing important information for efficiently restoring the affected target site and the selection criteria for trees to reduce forest fire damage through the evaluation of vegetation resilience by the intensity of forest fire damage and restoration methods.