• Title/Summary/Keyword: conical shell

Search Result 90, Processing Time 0.025 seconds

Free vibration analysis of composite conical shells using the discrete singular convolution algorithm

  • Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.353-366
    • /
    • 2006
  • The discrete singular convolution (DSC) algorithm for determining the frequencies of the free vibration of single isotropic and orthotropic laminated conical shells is developed by using a numerical solution of the governing differential equations of motion based on Love's first approximation thin shell theory. By applying the discrete singular convolution method, the free vibration equations of motion of the composite laminated conical shell are transformed to a set of algebraic equations. Convergence and comparison studies are carried out to check the validity and accuracy of the DSC method. The obtained results are in excellent agreement with those in the literature.

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

Natural vibrations of laminated anisotropic shells of revolution (적층 이방성 회전체 쉘의 고유진동 해석)

  • 전종균
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.135-141
    • /
    • 1995
  • Any arbitrarily shaped laminated composite shells of revolution can be sum of the conical shell elements. Therefore, finite element model of conical shell element will be developed in this study. To verify consistency and validity of this model, natural vibrations of this model is compared with the analytical solution of cylindrical shell. Herein, an extensive parametric study is presented to assess the modeling capability of this model in class of laminated composite cylinders. It is seen that the proposed model provides highly accurate results with analytical solution. Once development of this conical shell element is done, any arbitrarily shaped composite shells of revolution can be easily analyzed.

  • PDF

Prediction of Aerodynamic Stability Derivatives of Shell Configuration of Missile Using CFD Method (CFD를 이용한 유도탄 덮개 형상의 공력 미계수 예측)

  • Kang, Eunji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.363-370
    • /
    • 2020
  • In this study, pitching stability derivatives of the conical shell configuration is predicted using commercial CFD code. Unsteady flow analysis with forced harmonic motion of the model is performed using overset mesh. The test is conducted about Basic finner missile configuration. The static and dynamic stability derivatives are good agreement with available experimental data. As the same way, a conical shell is analyzed in Mach number 1.6 and various reduced frequency. The static and dynamic derivatives are obtained from the time-pitching moment coefficient histories in each of four cases of mean angle of attack. The variation of reduced frequency is not affected static and dynamic derivatives. Increasing the mean angle of attack, static derivatives are increased slowly. Comparison of the Cm curves at the steady and unsteady state results shows that the Cm curve including the damping effect is lower than otherwise case, approximately 9-18 %.

Reinforcing Effects of Umbrella-type Shell Roofs with Stiffeners (우산형 쉘 지붕의 보강재 보강효과)

  • Son, Byung-Jik;Jung, Dae-Suck;Lee, Kyu-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.45-50
    • /
    • 2007
  • In this study, reinforcing effects of umbrella-type shell roofs structures such as stadium, exhibition, auditorium and museum are analyzed. Umbrella-type shell roofs treated in this study are practical shapes of conical shells. The objective of this study is to analyze reinforcing effects of umbrella-type shell roofs with stiffeners. Various locations of stiffeners, that is, edge ring A, B, center ring, junction stringer and center stringer are presented and the effects of reinforcement is examined. Also, the reduction effects of roofs thickness by stiffeners are examined. It is shown that the thickness of roofs can be reduced about $20{\sim}30%$ by junction stringer and more than 60% by edge ring A.

Dynamic instability region analysis of reinforced-CNTs truncated conical shells using mixed DQ-Bolotin method

  • H. Vossough;F. Ahmadi;S. Golabi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • In this paper, dynamic buckling of truncated conical shell made of carbon nanotubes (CNTs) composite is studied. In aerospace industries, this category of structures is utilized extensively due to wide range of engineering applications. To calculate the effective material properties of the nanocomposite, The Mori-Tanaka model is applied. Also, the motion equations are derived with the assistance of the first order shear deformation theory (FSDT), Hamilton's principle and energy method. Besides, In order to solve motion equations and analyze dynamic instability region (DIR) of the structure, mixed model of differential quadrature method (DQM) and Bolotin's method is used. Moreover, investigation of the different parameters effects such as geometrical parameters and volume fraction of CNTs on the analysis of the DIR of the structure is done. In accordance with the obtained results, the DIR will occur at higher frequencies by increasing the volume fraction of CNTs.

Review on the Cylindrical Shell Research (원통쉘 연구의 현황과 전망)

  • Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.1-26
    • /
    • 2009
  • Cylindrical shells of isotropic and composite laminated materials are being used many engineering applications. This paper reviews the literature focusing on various aspects of shell research. The aspects of research receiving interest here are the cylindrical theory being used, the stress, buckling analysis and the impact analysis. The vibration analyses and stiffening characteristics of the cylindrical shell are investigated. The design optimizations of the cylindrical shell are reviewed. The studies on the conical and spherical shell are also reviewed. This review aticles contain 236 referencees.

Parametric Study of Composite Laminated Conical Shells (복합적층 원뿔형 쉘의 파라미터 연구)

  • Son, Byung-Jik;Jung, Dae-Suck
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.41-49
    • /
    • 2007
  • In general, the curved structures have the engineering efficiency as well as a fine view compared with straight member. Also, composite materials are composed of two or more different materials to produce desirable properties for structural strength as compared to single ones. Shell structures with composite materials have many advantages in strength and weight reduction. Therefore, composite laminated conical shells are analyzed in this study. To solve differential equations of conical shells, this paper used finite difference method. Various parametric study according to the change of radius ratio, vertex angle and subtended angle are examined. The change of radius ratio, vertex angle and subtended angle mean the change from conical shells to cylindrical shells, conical shells to circular plates and open shells closed shells, respectively.

Structural Analysis of Axisymmetric Conical Shells Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법을 이용한 축대칭 원추형 셸의 구조해석)

  • Choi, Myung-Soo;Byun, Jung-Hwan;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • Various finite elements have been studied and developed to analyze a variety of structures in the finite element method(FEM). The transfer stiffness coefficient method(TSCM) is an effective algorithm for structural analysis but the structures which can be applied were limited. In this paper, a computational algorithm for the structural analysis of axisymmetric conical shells under axisymmetric loading is formulated using the finite element-transfer stiffness coefficient method(FE-TSCM). The basic concept of FE-TSCM is the combination of the modeling technique of FEM and the transfer technique of TSCM. The FE-TSCM has all the advantages of both FEM and TSCM. After carrying out the structural analysis of axisymmetric conical shells using FEM, FE-TSCM, and analytical method we compare the computational results of FE-TSCM with those of the other methods in terms of computational accuracy.