• Title/Summary/Keyword: conic mirror

Search Result 15, Processing Time 0.028 seconds

Mobile robot localization using an active omni-directional range sensor (전방향 능동거리 센서를 이용한 이동로봇의 자기위치 추정)

  • 정인수;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1597-1600
    • /
    • 1997
  • Most autonomous mobile robots view things only in front of them. As a result they may collide against objects moving from the side or behind. To overcome the problem we have built an Active Omni-directional Range Sensor that can obtain omni-directional depth data by a laser conic plane and a conic mirror. Also we proposed a self-localization algorithm of mobile robot in unknown environment by fusion of Odometer and Active Omn-directional Range Sensor.

  • PDF

The Indoor Position Detection Method using a Single Camera and a Parabolic Mirror (볼록 거울 및 단일 카메라를 이용한 실내에서의 전 방향 위치 검출 방법)

  • Kim, Jee-Hong;Kim, Hee-Sun;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • This article describes the methods of a decision of the location which user points to move by an optical device like a laser pointer and a moving to that location. Using a conic mirror and CCD camera sensor, a robot observes a spot of user wanted point among an initiative, computes the location and azimuth and moves to that position. This system offers the brief data to a processor with simple devices. In these reason, we can reduce the time of a calculation to process of images and find the target by user point for carrying a robot. User points a laser spot on a point to be moved so that this sensor system in the robot, detecting the laser spot point with a conic mirror, laid on the robot, showing a camera. The camera is attached on the robot upper body and fixed parallel to the ground and the conic mirror.

Two-Dimensional Depth Data Measurement using an Active Omni-Directional Range Sensor (전방향 능동 거리 센서를 이용한 2차원 거리 측정)

  • Joung, In-Soo;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • Most autonomous mobile robots view only things in front of then, and as a result, they may collide with objects moving from the side or behind. To overcome this problem, an active omni-directional range sensor system has been built that can obtain an omni-directional depth map through the use of a laser conic plane and a conic mirror. In the navigation of the mobile robot, the proposed sensor system produces a laser conic plane by rotating the laser point source at high speed: this creates a two-dimensional depth map, in real time, once an image is captured. The results obtained from experiment show that the proposed sensor system is very efficient, and can be utilized for navigation of mobile robot in an unknown environment.

  • PDF

Active omni-directional range sensor for mobile robot navigation (이동 로봇의 자율주행을 위한 전방향 능동거리 센서)

  • 정인수;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.824-827
    • /
    • 1996
  • Most autonomous mobile robots view things only in front of them. As a result, they may collide against objects moving from the side or behind. To overcome the problem we have built an Active Omni-directional Range Sensor that can obtain omnidirectional depth data by a laser conic plane and a conic mirror. In the navigation of the mobile robot, the proposed sensor system makes a laser conic plane by rotating the laser point source at high speed and achieves two dimensional depth map, in real time, once an image capture. The experimental results show that the proposed sensor system provides the best potential for navigation of the mobile robot in uncertain environment.

  • PDF

Photorealistic Ray-traced Visualization Process of an Aspherical Fresnel Mirror with Low Distortion

  • Hien Nguyen;Hieu Tran Doan Trung;Van Truong Vu;Hocheol Lee
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.493-501
    • /
    • 2024
  • This study proposes an effective visualization method for image distortion in high-resolution, machinable Fresnel mirrors, which offer significant advantages over traditional convex mirrors by being thinner and lighter. While commercial optical design programs are excellent at optimizing aberrations, they have some limitations in visualizing images from complex optical configurations. Therefore, NXTM CAD software is employed to achieve photorealistic ray-traced visualization with high-fidelity image rendering due to its flexible two-dimensional and three-dimensional modeling environments. In comparative simulations with various mirror profiles, we identified an aspherical Fresnel mirror with a conic constant of k = -3 that can reduce distortion to 1.79%, according to Zemax OpticStudio® calculations. Finally, the NXTM software successfully validated the distortion image of our machinable aspherical Fresnel mirror design. Subsequent practical experiments validated the consistency between the predicted distortion and the actual visualization results. We anticipate that this specialized visualization technique holds the potential to radically transform the interactive design of optical systems that incorporate aspherical Fresnel mirrors.

Optical System Design for a Head-up Display Using Aberration Analysis of an Off-axis Two-mirror System

  • Kim, Byung-Hyun;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.481-487
    • /
    • 2016
  • This study presents a new optical system for a combiner-type head-up display (HUD) with a cylindrical lens as an asymmetrical aberration corrector, instead of a freeform mirror. In the initial design process based on off-axial aberration analysis, we obtain an off-axis two-mirror system corrected for linear astigmatism and spherical aberration by adding a conic secondary mirror to an off-axis paraboloidal mirror. Thus, since the starting optical system for an HUD is corrected for dominant aberrations, it enables us to balance the residual asymmetrical aberrations with a simple optical surface such as a cylinder, not a complex freeform surface. From this design process, an optical system for an HUD having good performance is finally obtained. The size of the virtual image is 10 inches at 2 meters away from a combiner, and the area of the eye box is 130×50 mm2.

Null lens design for testing of elliptical surface (타원면경 측정 Null 렌즈 설계)

  • 김연수
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.246-249
    • /
    • 2000
  • The null lens is designed for testing the elliptical (conic constant>O) mirror which is the third mirror of the off-axis Three Mirror Anastigmat (TMA) designed as a high resolution camera for remote sensing. The mixed type design is proposed as a new design type which has a small annular flat mirror, but has as twice sensitivity as the autostigmatic type design. It is also shown that the null lens of the Mixed type is better than that of the autostigmatic type in terms of the sensitivity of the wavefront distortion which is given as the magnitude of optical path difference with respect to the change of each surface parameters such as the radius of curvature, thickness of lenses and tested mirror.

  • PDF

Ray tracing simulation of SCOTS test for GMT secondary mirror

  • Kim, Ki-Won;Kim, Sug-Whan;Kim, Young-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.204.1-204.1
    • /
    • 2012
  • We present SCOTS test simulation for on axis segment of the GMT secondary mirror that is ellipsoidal shape surface of 1.064m in diameter, 4.166747m in radius of curvature, -0.7154 in conic constant and $18.023{\mu}m$ P-V in asphericity. SCOTS test comprises a screen(diffusing sinusoidal fringe source), test surface(GMT secondary mirror), and a camera(CCD detector). We report ray tracing simulation result that is distorted sinusoidal fringe pattern detected at the camera. This simulation is to be used for analysis of experimental design, sensitivity from uncertainty, errors on fabrication and design.

  • PDF

Optical System Design and Evaluation for an Augmented Reality Head-up Display Using Aberration and Parallax Analysis

  • Kim, Kum-Ho;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.660-671
    • /
    • 2021
  • We present a novel optical system for an augmented reality head-up display (AR HUD) with two virtual images at different conjugates by employing a confocal off-axis two-mirror and introducing the horopter circle. For a far virtual image with large asymmetrical aberrations, we initially obtain an off-axis two-mirror system corrected for these aberrations and compensated for the down angle by configuring its parameters to satisfy the confocal and Scheimpflug conditions, respectively. In addition, this system is designed to reduce the biocular parallax by matching Petzval surface into the longitudinal horopter circle in a near virtual image. This design approach enables us to easily balance the residual aberrations and biocular parallax when configuring the optical system with two different conjugates, which results in an AR HUD available for near and far virtual images together.

Design of a new omnidirectional image sensing system for assembly (OISSA) (조립을 위한 새로운 전방향 시각장치의 설계)

  • Kim, Wan-Su;Cho, Hyeong-Seok;Kim, Seong-Gwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.88-99
    • /
    • 1998
  • In assembly, misalignment must be detected and compensated for during the mating period, regardless of the complexity of the cross-sectional shape. To this end, we propose a novel omnidirectional image sensing system for assembling parts with complicated shapes(OISSA) and its feasibility for detecting the misalignment between mating parts is shown by a series of simulations. This system encompasses a camera with an optical unit attached to the front of the camera. The optical unit consists of a pair of plane mirrors and a pair of conic mirrors. Utilizing the proposed sensing system, a 2$\pi$ coaxial image of the misalignment along the mating boundary interface between mating parts can be immediately obtained without experiencing self-occlusion.

  • PDF