동적으로 변하는 시간 가변적 네트워크 환경에서 엣지 디바이스의 최적 이동패턴은 FEC환경에서 응용 서비스 사용자에 근접한 에지 클라우드 서버에 컴퓨팅 리소스를 분배하거나 새로운 에지 서버(기지국)를 배치하는데 적용함으로써, 클라우드 컴퓨팅의 단점인 지연시간 문제 완화를 위한 효율적 계산 오프로딩이 가능한 환경 구축에 활용이 가능하다. 본 논문은 임의의 시간제약 및 이동규칙 등이 적용되는 시공간 환경에서 응용 서비스를 요구하는 다수의 엣지 디바이스(이동객체)들의 이동경로를 빈발도 기반으로 분석하여 최적 이동패턴을 추출하는 알고리즘을 제안한다. 제안한 OPE_freq 알고리즘을 A* 및 Dijkstra 알고리즘들과 비교 실험을 통하여, 제안 알고리즘이 상대적으로 빠른 연산시간과 적은 메모리를 사용하고 보다 정확한 최적경로를 추출함을 알 수 있다. 또한 A* 알고리즘과의 비교 결과를 통하여 가중치를 빈발도와 동시에 적용함으로써 경로 추출의 정확도를 향상시킬 수 있음을 도출하였다.
일반적으로 차로변경 형태는 선택적 차로변경과 강제적 차로변경 등의 두 가지 형태로 구분된다. 선택적 차로변경은 운전자가 원하는 운전상태를 유지하기 위해 선택적으로 차로를 변경하는 경우이며 강제적 차로변경은 운전자가 현재 차로에서 반드시 차로를 변경해야 하는 경우로 합류부 또는 분류부와 같은 반복정체 구간에서 발생하므로 연속류 도로의 교통상태에 매우 큰 영향을 미치게 된다. 본 연구에서는 먼저 고속도로의 대표적인 반복정체 구간인 합류부와 엇갈림 구간에서 수집한 항공사진 개별차량 자료를 사용하여 교통량, 속도, 밀도 데이터와 차로변경 데이터를 생성하였다. 개별차량 속도 변화추이를 이용하여 각 분석구간에서 안정류와 정체류를 구분하였으며 30m 간격으로 분석구간을 구분하여 교통혼잡전과 후의 차로변경 횟수와 차로변경 지점의 변화를 차로변경 분포를 통하여 비교분석 하였고 정체 교통류를 대상으로 차로 변경 분포를 이용하여 본선차로간 전이과정에 대한 분석을 수행하였다. 본 연구는 본선 차로간의 차로변경 분포와 본선과 연결로간의 차로변경 행태가 고속도로의 교통류 흐름에 따라 변화하는 영향을 분석하여 고속도로 반복정체구간의 차로변경 모형을 개발하는데 기초이론 제시를 목적으로 수행되었다.
This work aims to : establish a model of the container physical distribution system of Pusan port comprising 4 sub-systems of a navigational system, on-dock cargo handling/transfer/storage system, off-dock CY system and an in-land transport system : examine the system regarding the cargo handling capability of the port and analyse the cost of the physical distribution system. The overall findings are as follows : Firstly in the navigational system, average tonnage of the ships visiting the Busan container terminal was 33,055 GRT in 1990. The distribution of the arrival intervals of the ships' arriving at BCTOC was exponential distribution of $Y=e^{-x/5.52}$ with 95% confidence, whereas that of the ships service time was Erlangian distribution(K=4) with 95% confidence, Ships' arrival and service pattern at the terminal, therefore, was Poisson Input Erlangian Service, and ships' average waiting times was 28.55 hours In this case 8berths were required for the arriving ships to wait less than one hour. Secondly an annual container through put that can be handled by the 9cranes at the terminal was found to be 683,000 TEU in case ships waiting time is one hour and 806,000 TEU in case ships waiting is 2 hours in-port transfer capability was 913,000 TEU when berth occupancy rate(9) was 0.5. This means that there was heavy congestion in the port when considering the fact that a total amount of 1,300,000 TEU was handled in the terminal in 1990. Thirdly when the cost of port congestion was not considered optimum cargo volume to be handled by a ship at a time was 235.7 VAN. When the ships' waiting time was set at 1 hour, optimum annual cargo handling capacity at the terminal was calculated to be 386,070 VAN(609,990 TEU), whereas when the ships' waiting time was set at 2 hours, it was calculated to be 467,738 VAN(739,027 TEU). Fourthly, when the cost of port congestion was considered optimum cargo volume to be handled by a ship at a time was 314.5 VAN. When the ships' waiting time was set at I hour optimum annual cargo handling capacity at the terminal was calculated to be 388.416(613.697 TEU), whereas when the ships' waiting time was set 2 hours, it was calculated to be 462,381 VAN(730,562 TEU).
여러 대도시에서 교통 혼잡 문제를 해결하기 위해 정확한 교통 흐름을 예측하는 다양한 연구가 진행되었다. 대부분의 연구가 과거의 교통 흐름 패턴이 미래에도 반복될 것이라는 가정하에 예측 모델을 개발하였으나 교통사고 등과 같은 뜻하지 않은 비반복적 교통 패턴을 예측하는 데에는 신뢰성이 낮게 나타났다. 이런 문제를 해결하기 위한 대안으로 지능형 교통 시스템(ITS)을 통해 얻은 빅데이터와 인공지능을 접목한 교통 흐름 예측 연구가 진행되어 왔다. 하지만 시계열 분석에 일반적으로 사용되는 알고리즘인 RNN의 경우, 단기 예측에 최적화되어 장기 예측 정확도가 낮다는 단점을 가지고 있다. 이런 문제를 해결하기 위해 본 논문에서는 기온과 강수량 등의 기상 정보 외에도 각종 외부 요인들을 고려하여 장기적 시점에서 교통 혼잡도를 예측하는 '심층 인공 신경망 모델'을 제안하였다. TOPIS 자료를 이용한 사례 연구 결과 서울시 주요 도로 링크의 교통 혼잡도를 90%에 가까운 정확도로 예측이 가능하였다. 추후 교통사고나 도로 공사와 같은 도로에 영향을 미치는 이벤트 데이터를 추가로 확보할 수 있다면 정확도는 더욱 높아질 것으로 예상된다.
이 연구는 시계열 과거 속도자료를 활용하여 유사한 패턴 변화를 보이는 요일을 그룹핑하는 알고리즘을 개발하였다. 알고리즘에 적용할 이력자료 시간적 범위는 과거 2개월치 자료를 사용하였으며, 공간적 범위는 도시부도로를 대상으로 하였다. 이 연구에서 제안한 알고리즘은 크게 거시적인 관점과 미시적인 관점으로 나누어 요일별 패턴분류를 수행하였다. 먼저 거시적인 관점에서 요일별 첨두/비첨두 시간대와 요일별 속도변화가 크게 나타나는 중점시간대를 도출하였다. 미시적인 관점에서는 거시적인 관점에서 도출된 중점시간대를 대상으로 요일간 속도 차이를 개별(요일별) 혹은 그룹간의 유사성을 비교하여 단계적으로 분류하는 2단계 속도 군집 알고리즘(Two-step speed clustering algorithm, TSC)을 개발하였다. TSC 알고리즘은 중점시간대의 매 가공주기(또는 제공주기)마다 요일별(월~일) 속도차이를 토대로 그룹핑하는 1단계와 1단계에서 도출된 각 그룹의 평균과 요일간의 속도차이를 비교하여 재할당하는 2단계로 구성된다. TSC 알고리즘은 실제 지점검지기에서 수집된 시간대별 시계열 자료를 토대로 개발 및 성능평가가 수행되었다. 따라서, 교통정보센터에서 수집 가공 저장되는 과거이력자료를 이용하여 요일별 패턴분류 수행이 가능하고 알고리즘 구현도 실제 가공체계에 적용하기 용이하다. 이 연구에서 제안한 알고리즘은 통행패턴기반 정보가공 알고리즘 개발, 요일별 반복정체구간 운영관리, TOD에 근거한 신호운영 개선 등 교통운영 및 관리 전반에 적용이 가능하다.
텔레매틱스 서비스 중에서 가장 많이 이용하고 있는 것 중 하나는 출발지와 목적지에 이르는 최단 경로를 찾아 주는 서비스이다 . 현재 보편적으로 사용되고 있는 최단 경로 찾기서비스는 실시간 교통 정보를 고려하지 않는 정적인 최단 경로 알고리즘을 사용하고 있다. 본 연구에서는 실시간 교통 정보를 반영하여 현재 시간으로부터 일정 시간 경과한 후의 교통 정보를 예측하기 위한 방법을 제안하고 예측 결과의 정확성을 평가하기 위해 실시간 데이터를 이용하여 실험하였다. 제안된 방법은 도로 위를 달리는 차량의 평균 속도를 5분 단위로 입력 받아 누적된 데이터를 동일한 시간과 요일별로 분석하여 구한 누적 속도패턴과 칼만 필터 방법을 통합한 것이다 . 제안한 방법은 현재 사용되고 있는 누적 속도 패턴만을 이용한 예측보다 더 정확한 예측 결과를 보여 주었다. 예측된 결과는 동적인 최단 경로를 구하기 위해 사용될 뿐만 아니라교통혼잡이 예측되는 지역을 피하여 여행하도록 정보를 제공할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권11호
/
pp.5179-5202
/
2018
Transmission Control Protocol (TCP) is the most widely used protocol in the cloud data centers today. However, cloud data centers using TCP experience many issues as TCP was designed based on the assumption that it would primarily be used in Wide Area Networks (WANs). One of the major issues with TCP in the cloud data centers is the Incast issue. This issue arises because of the many-to-one communication pattern that commonly exists in the modern cloud data centers. In many-to-one communication pattern, multiple senders simultaneously send data to a single receiver. This causes packet loss at the switch buffer which results in TCP throughput collapse that leads to high Flow Completion Time (FCT). Recently, Software-Defined Networking (SDN) has been used by many researchers to mitigate the Incast issue. In this paper, a detailed survey of various SDN based solutions to the Incast issue is carried out. In this survey, various SDN based solutions are classified into four categories i.e. TCP Receive Window based solutions, Tuning TCP Parameters based solutions, Quick Recovery based solutions and Application Layer based solutions. All the solutions are critically evaluated in terms of their principles, advantages, and shortcomings. Another important feature of this survey is to compare various SDN based solutions with respect to different performance metrics e.g. maximum number of concurrent senders supported, calculation of delay at the controller etc. These performance metrics are important for deployment of any SDN based solution in modern cloud data centers. In addition, future research directions are also discussed in this survey that can be explored to design and develop better SDN based solutions to the Incast issue.
최근 클라우드 환경의 서비스 지연문제 해결을 위하여 응용서비스의 사용자 근접성 확보 및 계산 오프로딩을 위한 FEC (Fog/Edge Computing) 패러다임에 대한 연구가 활발하다. 엣지 디바이스 (이동객체)들의 동적 위치변화 패턴 예측방법은 FEC 환경에서 컴퓨팅 리소스의 효율적 분배 및 배치를 위하여 중요한 역할을 한다. 본 논문은 엣지 디바이스들의 이동 빈발패턴에 대한 지지도의 임계값을 적용하여 선택된 경로들을 대상으로 임의의 가중치 (거리, 시간, 혼잡도)를 추가적으로 적용한 최적 이동패턴 추출방법을 제안한다. 실험을 통하여 제안 알고리즘은 빈발도만을 적용한 OPE_freq [8] 알고리즘과 A* 및 Dijkstra 알고리즘 등과 비교한 결과, 수행시간과 노드 접근횟수를 감소시키고 보다 정확한 경로를 추출함을 알 수 있다.
Journal of information and communication convergence engineering
/
제5권2호
/
pp.171-176
/
2007
To give a guarantee a consistently high level of quality and reliability of Telematics traffic service, traffic flow forecasting is very important issue. In this paper, we proposed an adaptable integrated prediction model to predict the traffic flow in the future. Our model combines two methods, short-term prediction model and long-term prediction model with different combining coefficients to reflect current traffic condition. Short-term model uses the Kalman filtering technique to predict the future traffic conditions. And long-term model processes accumulated speed patterns which means the analysis results for all past speeds of each road by classifying the same day and the same time interval. Combining two models makes it possible to predict future traffic flow with higher accuracy over a longer time range. Many experiments showed our algorithm gives a better precise prediction than only an accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.
Since the middle of 1950's, containerization has been rapidly spread over the world in virtue of great merits providing to interensts, and the fundamental changes in port management and prot operations are resulted. As the container terminal is a complex system which is consisted of various subsystems, the treatment for improving the productivity is required in a comprehensive fashion, both in each of its parts and as an integrated system. This paper aims to make an intensive analysis of the Busan Container Terminal system, especially focusing on its subsystems such as ship operation system, storage system and transfer system. First of all, the intrinsic capacity of various subsystems is calculated and it is checked whether the current operation is being performed effectively through the formal analysis. Secondly, the suggestion is presented to improve the operation by considering the throughput that the port of Busan will have to accept in the near future. The results are as follows; 1) As the inefficiency is due to the imbalance between various subsystems at Busan terminal, transfer equipment level must be up to 31% for straddle carrier and 67% transfer crane above all. 2) The yard capacity must be increased by reducing the free dwell time of containers in order to accept the traffic volume smoothly in the near future. 3) The better way to reduce the port congestion is to change berthing rule from the FIFP to the Pre-allocated system by considering the ship arrival pattern.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.