• Title/Summary/Keyword: confinement stress

Search Result 225, Processing Time 0.023 seconds

Modeling of a Confinement Effect in Laser Shock Peening on Titanium Alloy (티타늄 합금에 대한 레이저 쇼크 피닝에서 컨파인먼트에 따른 피닝 효과 모델링)

  • Lee, Wooram;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.680-685
    • /
    • 2013
  • In this study, the effect of laser shock peening on a titanium alloy was modeled using different confinements. Both liquid and solid confinement could be applied to laser shock peening, and solid confinement provided a dry laser shock peening process, which has the advantage of a corrosion-free effect. When a different confinement was applied to laser shock peening, a different peening effect would be expected. In our study, the peening effect was numerically modeled and simulated. The main effect of different confinements was a change in the impedances required to confine a shock wave from a plasma. The impedances were assumed with respect to different materials. Johnson-Cook's plastic deformation modeling was applied to the simulation. The strains and residual stresses were calculated to evaluate the confinement effects. When solid confinement was used, the residual stress increased by 60-85%, compared to the case of liquid confinement. However, the depth of the residual stress was slightly deeper. The simulated results could be applied to estimate the peening effect when a different confinement was used in the laser shock peening process.

A Study on the Axial Behavior of the Concrete Cylinders Confined by Carbon Fiber Sheets (탄소섬유쉬트로 횡구속된 콘크리트 공시체의 압축 거동에 관한 연구)

  • Hwang, Jin-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • Recently the Carbon Fiber Sheet(CFS) is widely used for strengthening damaged RC structures. Strengthening compression members such as column can increase ductility and strength due to the confinement effect. In this experiment, the behavior of concrete cylinders confined by CFS was examined. The confinement pressure is increased linearly as axial stress is increased in low axial stress, and the confinement effect of CFS was rapidly developed after near maximum axial stress, thus axial strength and ductility was improved. As the ratio of CPS is increased, concrete cylinders failed due to local fracture of CFS. The confinement effect of circular section is more efficient than that of rectangular section. And significant improvement of axial strength, axial strain, transverse strain at failure is observed in circular section. This is because in rectangular section the local fracture of CFS near corner may be occured, thus the strain efficiency ratio must be considered for RC structures with CFS.

  • PDF

Confinement model for RC columns strengthened with direct-fastened steel plates

  • Shan, Z.W.;Looi, D.T.W.;Su, R.K.L.
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.367-381
    • /
    • 2021
  • Reinforced concrete (RC) columns can be strengthened by direct fastening of steel plates around a column, forming composite actions. This method can increase both the total load bearing area and the concrete confinement stress. To predict the axial load resistance of strengthened RC columns, the equivalent passive confinement stress of the stirrups and the steel jacket should be accurately quantified, which requires the stress in the stirrups and shear force in the connections to be first obtained. In this paper, parameters, i.e., the stress ratio of the stirrups and shear force ratio of steel plate connectors are utilized to quantify the stress of the stirrups and shear force in the connections. A mechanical model for determining the stress ratio of the stirrups and shear force ratio of steel plate connectors is proposed and validated using the experimental results in a previous study. The model is found to be robust. Subsequently, a parametric study is conducted and the optimum stress ratios of the stirrups and the optimum shear force ratios of connectors are proposed for engineering designs.

Variations in Ductility of Shear Wall with Length of Boundary Confinement (단부 횡보강영역에 따른 전단벽 연성도의 변화)

  • 강수민;오재은;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.853-858
    • /
    • 2001
  • Experimental studies were peformed to investigate variations in ductility of shear wall with length of boundary confinement. Eight specimens containg different lengths of confinment zone, which model compressive zone in plastic regions of shear walls, were tested against eccentric vetical load. Stress-strain model for confined concrete was used to predict strength and ductility of the specimens, which was compared to the test results. The results obtained show that failure of the compressive zone occurs in a brittle manner when the stress of unconfined zone softened after the ultimate strength were reached. To enhance the ductility of shear walls with concentrated confinement zone such as barbell-type walls, the ultimate strength of the confinement zone needs to be increased, and for shear walls with distributed confinement zone the length of the confinement zone needs to be extended.

  • PDF

Estimation of Confinement Stress for Concrete Compressive Member Rehabilitated with Carbon Fiber Laminate (탄소섬유판으로 보강된 콘크리트 압축부재의 횡보강응력의 산정)

  • Lee, Hee-Kyoung;Kim, Sung-Chul;Yoo, Seong-Hoon;Kim, Joong-Koo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.593-600
    • /
    • 1998
  • In this study, confinement stress of concrete compression members rehabilitated with C.F.L were analyzed from the test. Test parameters are spacing, thickness and ply of rehabilitation material. Displacement, failure load were measured during test. The failure mode and ultimate load were analyzed from these measured data. In this study, a model equation for calculation of the confining stress with C.F.L was proposed based on the test results investigated here. The proposed equation included the effects of spacing, thickness and ply of rehabilitation material.

  • PDF

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.

Finite element modelling of reinforced concrete structures with laboratory verification

  • Cheng, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.593-609
    • /
    • 1995
  • The presence of reinforcement has a significant influence on the stress-strain behaviour of reinforced concrete structures, expecially when the failure stage of the structures is approached. In the present paper, the constrained and non-constrained zones of concrete due to the presence of reinforcement is developed and the stress-stress-strain behaviour of concrete is enhanced by a reinforcement confinement coefficient, Furthermore, a flexible method for the modelling of reinforcement with arbitrary orientation and not passing the nodes of concrete element is also proposed. Numerical examples and laboratory tests have shown that the coefficient and the modelling technique proposed by the author are satisfactory.

Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns

  • Le, An H.;Ekkehard, Fehling;Thai, Duc-Kien;Nguyen, Chau V.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • The research on the confinement behavior of ultra high performance concrete without and with the use of steel fibers (UHPC and UHPFRC) has been extremely limited. In previous studies, authors experimentally investigated the axially compressive behavior of circular steel tube confined concrete (STCC) short and intermediate columns with the employment of UHPC and UHPFRC. Under loading on only the concrete core, the confinement effect induced by the steel tube was shown to significantly enhance the utimate stress and its corresponding strain of the concrete core. Therefore, this paper develops a simplified stress - strain model for circular STCC columns using UHPC and UHPFRC with compressive strength ranging between 150 MPa and 200 MPa. Based on the regression analysis of previous test results, formulae for predicting peak confined stress and its corresponding strain are proposed. These proposed formulae are subsequently compared against some previous empirical formulae available in the literature to assess their accuracy. Finally, the simplified stress - strain model is verified by comparison with the test results.

Confinement effect on the behavior factor of dual reinforced concrete moment-resisting systems with shear walls

  • Alireza Habibi;Mehdi Izadpanah;Yaser Rahmani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.781-791
    • /
    • 2023
  • Lateral pressure plays a significant role in the stress-strain relationship of compressed concrete. Concrete's internal cracking resistance, ultimate strain, and axial strength are improved by confinement. This phenomenon influences the nonlinear behavior of reinforced concrete columns. Utilizing behavior factors to predict the nonlinear seismic responses of structures is prevalent in seismic codes, and this factor plays a vital role in the seismic responses of structures. This study aims to evaluate the confining action on the behavior factor of reinforced concrete moment resisting frames (RCMRFs) with shear walls (SWRCMRFs). To this end, a diverse range of mid-rise SW-RCMRFs was initially designed based on the Iranian national building code criteria. Second, the stress-strain curve of each element was modeled twice, both with and without the confinement phenomenon. Each frame was then subjected to pushover analysis. Finally, the analytical behavior factors of these frames were computed and compared to the Iranian seismic code behavior factor. The results demonstrate that confining action increased the behavior factors of SW-RCMRFs by 7-12%.

Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST)

  • Wang, Qingli;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.455-480
    • /
    • 2014
  • Sixteen concrete filled square CFRP-steel tubular (S-CFRP-CFST) stub columns under axial compression were experimentally investigated. The experimental results showed that the failure mode of the specimens is strength loss of the materials, and the confined concrete has good plasticity due to confinement of the CFRP-steel composite tube. The steel tube and CFRP can work concurrently. The load versus longitudinal strain curves of the specimens can be divided into 3 stages, i.e., elastic stage, elasto-plastic stage and softening stage. Analysis based on finite element method showed that the longitudinal stress of the steel tube keeps almost constant along axial direction, and the transverse stress at the corner of the concrete is the maximum. The confinement effect of the outer tube to the concrete is mainly focused on the corner. The confinements along the side of the cross-section and the height of the specimen are both non-uniform. The adhesive strength has little effect both on the load versus longitudinal strain curves and on the confinement force versus longitudinal strain curves. With the increasing of the initial stress in the steel tube, the load carrying capacity, the stiffness and the peak value of the average confinement force are all reduced. Equation for calculating the load carrying capacity of the composite stub columns is presented, and the estimated results agree well with the experimental results.