• Title/Summary/Keyword: confinement effect

Search Result 492, Processing Time 0.037 seconds

Confinement Effect by Plate Type Lateral Reinforcement and Investigation of the Possibility for Use of High Strength Steel Bars in Reinforced Concrete Columns (횡방향 판재에 의한 횡구속 효과 및 철근콘크리트 기둥에서 고강도 철근의 사용성 검토)

  • Cho, Young-Jae;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.643-650
    • /
    • 2012
  • The limitation of the yield strength in reinforced concrete columns is given for the effective use of high-strength steel bar, because very high-strength steel bar does not yield while concrete fails in compression. In order to overcome this limitation, it is required to increase peak strain of the concrete. The objective of this study is to examine the confinement effect of plate type lateral reinforcement in reinforced concrete columns. From this experimental study, the reinforced concrete columns confined by plate type carbon fiber sheets showed higher compressive strength and peak concrete strain comparing to the unconfined columns. The confinement effect is higher when cross-sectional type is a circular one than a square one. Moreover, the confinement effect was also higher for circular type confinement. Based on this study, high-strength steel bars with strength exceeding 800 MPa can be effectively used for reinforced concrete columns confined by plate type lateral reinforcements.

Effect of confinement on flexural ductility design of concrete beams

  • Chen, X.C.;Bai, Z.Z.;Au, F.T.K.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.129-143
    • /
    • 2017
  • Seismic design of reinforced concrete (RC) structures requires a certain minimum level of flexural ductility. For example, Eurocode EN1998-1 directly specifies a minimum flexural ductility for RC beams, while Chinese code GB50011 limits the equivalent rectangular stress block depth ratio at peak resisting moment to achieve a certain nominal minimum flexural ductility indirectly. Although confinement is effective in improving the ductility of RC beams, most design codes do not provide any guidelines due to the lack of a suitable theory. In this study, the confinement for desirable flexural ductility performance of both normal- and high-strength concrete beams is evaluated based on a rigorous full-range moment-curvature analysis. An effective strategy is proposed for flexural ductility design of RC beams taking into account confinement. The key parameters considered include the maximum difference of tension and compression reinforcement ratios, and maximum neutral axis depth ratio at peak resisting moment. Empirical formulae and tables are then developed to provide guidelines accordingly.

Experimental Study of Structural Capacity Evaluation of RC T-shape Walls with the Confinement Effect (단부구속 효과에 따른 철근콘크리트 T형 벽체의 구조성능 평가에 관한 실험적 연구)

  • 하상수;윤현도;최창식;오영훈;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.191-196
    • /
    • 2001
  • The structural performance of a shear wall subjected to lateral loads is influenced by many factors, such as sectional shape, aspect ratio, vertical and horizontal reinforcement, lateral confinement and axial compression, etc. This experimental research is focusing to investigate the structural performance of T-shaped walls with different confining reinforcement. Experimental results show that all specimens finally failed by the crushing of the concrete in the compression zone. Although the location and content of the lateral confinement is different, the results are very similar during the negative loading direction where the flange is compressed. However, when flange is subjected to tension, the location and content of the lateral confinement results in a large difference in the structural performance of T-shaped walls. Therefore, selection of location and content of the lateral confinement would be important aspect in the design of the nonsymmetric structural walls.

  • PDF

Confinement of concrete in two-chord battened composite columns

  • Szmigiera, Elzbieta
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1511-1529
    • /
    • 2015
  • This article provides an analysis of the complex character of stress distribution in concrete in stub columns consisting of two HE160A steel sections held together with batten plates and filled with concrete. In such columns, evaluating the effect of concrete confinement and determining the extent of this confinement constitute a substantially complex problem. The issue was considered in close correspondence to rectangular cross section tubular elements filled with concrete, concrete-encased columns, as well as to steel-concrete columns in which reinforcement bars are connected with shackles. In the analysis of concrete confinement in two-chord columns, elements of computational methods developed for different types of composite cross sections were adopted. The achieved analytical results were compared with calculations based on test results.

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

The Confining Effect of Concrete by Internal Steel Tube (내부 삽입강관에 의한 콘크리트 구속효과 연구)

  • Kim Hong Jung;Han Taek Hee;Kang Young Jong;Jung Doo Suk
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.501-509
    • /
    • 2003
  • The confining effect of concrete was studied when a steel tube is set at the inside face of a hollow reinforced concrete column. To investigate the confining effect by a steel tube, 36 specimens were tested and compared. Test results show that the inserted steel tube provide sufficient confinement to the confining effect depends on the thickness of the steel tube. And also, test results show that the provided confinement by a steel tube increase the strength of concrete.

  • PDF

Behavior of circular CFT columns subject to axial force and bending moment

  • Kwak, Ji-Hyun;Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.173-190
    • /
    • 2013
  • The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of circular CFT columns. To consider the confinement effect, proper material models with respect to the confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of the surrounding steel tube, as well as geometric nonlinearity due to the P-${\Delta}$ effect, are taken into account. The validity of the proposed numerical analysis model is established by comparing the analytical predictions with the results from previous experimental studies about pure bending and eccentric axial loading. Numerical predictions using an unconfined material model were also compared to investigate the confinement effects on various loading combinations. The ultimate resisting capacities predicted by the proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing design recommendation.

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

Confinement Effect of Recycled Coarse Aggregate Concrete (순환 굵은 골재 콘크리트의 횡구속 효과)

  • Jung, Chang-Kyo;Kim, Do-Jin;Lee, Sun-Hee;Kim, Young-Sik;Kim, Sang-Woo;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.91-92
    • /
    • 2010
  • This paper is experimental study on the confinement effect of concrete using recycled coarse aggregates confined by steel spirals. The experimental results indicated that confinement effect of recycled aggregate concrete was similar to that of natural aggregate concrete ones.

  • PDF