• Title/Summary/Keyword: confined system

Search Result 387, Processing Time 0.031 seconds

Case study on Smart Safety Technology Application To Confined Space (밀폐공간에서 스마트 안전기술 적용 사례 연구)

  • Jung, Tae-hoi;So, Han-sub;Seo, Kyeong-deuk;Jin, Jeong-il;Park, Kyo-shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.503-509
    • /
    • 2021
  • Objectives: The utility of the system was analyzed by applying the smart safety technology system to the aging pipe rehabilitation facility construction classified as a confined space. Methods: Smart safety management system was applied to a site where the aging pipe rehabilitation work was in progress. The working environment was measured for 25 days, and the toxic gas saturation was analyzed according to the working time and working place. Results: Based on the measured results, two characteristic environmental changes in the confined space were confirmed. First, when working inside an aging pipe, the tendency of carbon dioxide saturation increases with working time and the number of workers. Second, oxygen decreases when working in a space away from the entrance. Conclusions: Various applications of smart safety technology have been confirmed based on the measured data, and this is expected to be useful for environmental characteristic analysis and safety management when applied to a confined space composed with various conditions in the future.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

Comparison and Improvement of Domestic and Foreign Regulations for the Prevention of Suffocation Accidents (국외 질식재해 예방규정 비교를 통한 국내 규정 개선방안)

  • Lim, Dae Sung;Lee, Seung kil;Kim, Chi-Nyon;Cho, Kee Hong;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.1
    • /
    • pp.83-93
    • /
    • 2021
  • Objectives: 'Confined space' was only defined in the Safety and Health Regulations as a place where oxygen deficiency and hydrogen sulfide must be dealt with at the time of the initial enactment (1982). The danger of fire and explosion were added in 2003. We will compare and review the regulations related to confined space work under the current safety and health rules alongside regulations in other countries and prepare a plan to improve the system through enhanced clarity and execution. Methods: In a comparison of systems for the prevention of suffocation in confined spaces in major countries (Germany, United States, Japan) different concepts of the definition of confined spaces in different countries apparently due to differences in each country's legal implementation system, accident analysis methods, the status of safety and health implementation in workplaces, the precautions against actual confined space work, and the definition of confined spaces were found to be not much different between Korea and the other foreign countries. Results: In the case of Germany and the United States, a confined space is defined as a contextual concept rather than a place, so more careful attention is needed from operators or enclosed space managers as it is often necessary to judge the actual workplace. In the case of Korea and Japan, the interior of the place is mainly defined as a place, especially in the case of Japan, which concentrates on oxygen deficiency and hydrogen sulfide poisoning. Conclusions: For measures to improve regulations on the prevention of suffocation accidents in Korea, I would like to propose three major measures to improve the system in the rules on domestic industrial safety and health standards. It is necessary to prepare and provide a guide to ensure that the 18 types of confined spaces currently defined as confined spaces are clearly understood by field management supervisors or workers.

Experimental study and modelling of CFRP-confined damaged and undamaged square RC columns under cyclic loading

  • Su, Li;Li, Xiaoran;Wang, Yuanfeng
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.411-427
    • /
    • 2016
  • While the cyclic behaviour of fiber-reinforced polymer (FRP)-confined columns is studied rather extensively, the cyclic response especially the energy dissipation of FRP-confined damaged and undamaged square RC columns is not yet fully understood. In this paper, an experimental and numerical investigation was conducted to study the cyclic behavior of two different types of Carbon FRP (CFRP)-confined square RC columns: strengthened and repaired. The main variables investigated are initial damage, confinement of CFRP, longitudinal steel reinforcement ratio. The experimental results show that lower initial damage, added confinement with CFRP and longitudinal reinforcement enhance the ductility, energy dissipation capacity and strength of the columns, decrease the stiffness and strength degradation rates of all CFRP-confined square RC columns. Two hysteretic constitutive models were developed for confined damaged and undamaged concrete and cast into the non-linear beam-column fiber-based models in the software Open System for Earthquake Engineering Simulation (OpenSees) to analyze the cyclic behavior of CFRP-confined damaged and undamaged columns. The results of the numerical models are in good agreement with the experiments.

Analytical Study on the Fire Resistance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내화 성능에 대한 해석 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Jong Sup;Kim, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • A column resisting axial load and seismic load is one of the main members in a structural system. The heated column by event of a fire can lose its strength and it may damage its structural system or cause the collapse of the entire structural system. In this study, the fire resistance capacity of internally confined hollow concrete filled tube (ICH CFT) column was investigated. In an ICH CFT column, the yield strength of the external tube is important as a concrete filled tube (CFT) column because the external tube confines the filled concrete and the strength of the column depends on the confined effect. A study was performed by finite element analyses considering the confined effect and material nonlinearity as the temperature changes by the fire. The hollow ratio, the thickness of the external tube, and the strength of concrete were selected as the parameters for the analyses. The analyses were performed by using a commercial FEA program (ABAQUS) and nonlinear concrete model program. The analysis results showed that the hollow ratio and the strength of concrete mainly affect the fire resisting capacity of an ICH CFT column.

Exploring the Contributory Factors of Confined Space Accidents Using Accident Investigation Reports and Semistructured Interviews

  • Naghavi K., Zahra;Mortazavi, Seyed B.;Asilian M., Hassan;Hajizadeh, Ebrahim
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.305-313
    • /
    • 2019
  • Background: The oil and gas industry is one of the riskiest industries for confined space injuries. This study aimed to understand an overall picture of the causal factors of confined space accidents through analyzing accident reports and the use of a qualitative approach. Methods: Twenty-one fatal occupational accidents were analyzed according to the Human Factors Analysis and Classification System approach. Furthermore, thirty-three semistructured interviews were conducted with employees in different roles to capture their experiences regarding the contributory factors. The content analyses of the interview transcripts were conducted using MAXQDA software. Results: Based on accident reports, the largest proportions of causal factors (77%) were attributed to the organizational and supervisory levels, with the predominant influence of the organizational process. We identified 25 contributory factors in confined space accidents that were causal factors outside of the original Human Factors Analysis and Classification System framework. Therefore, modifications were made to deal with factors outside the organization and newly explored causal factors at the organizational level. External Influences as the fifth level considered contributory factors beyond the organization including Laws, Regulations and Standards, Government Policies, Political Influences, and Economic Status categories. Moreover, Contracting/Contract Management and Emergency Management were two extra categories identified at the organizational level. Conclusions: Preventing confined space accidents requires addressing issues from the organizational to operator level and external influences beyond the organization. The recommended modifications provide a basis for accident investigation and risk analysis, which may be applicable across a broad range of industries and accident types.

A study on the computer simulation model of the closed rotating system about the closed system (폐쇄된 계의 닫힌 회전 운동에 대한 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung, Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.3
    • /
    • pp.181-186
    • /
    • 2007
  • The movement in the closed system's internal and external, consists of linear open motion and linear closed motion, as well as non-linear motion and non-linear closed motion. When the linear closed motion receives external forces such as friction, closed motion is activated. It explains that even closed rotating systems that are subjected to external forces such as friction becomes a confined rotating system. Through fluid experiments the closed rotating system and confined system's quantitative data was observed and closed rotating system was confirmed to formulate the computer simulation function model concerning closed motion and confined motion. A basic graphic configuration of the motion device is also introduced.

  • PDF

Seismic Performance Evaluation of Confined Masonry Wall System Considering of Shear-Depth Ratio (전단스팬비 영향을 고려한 RC구속조적조 벽체의 내진성능평가)

  • Kim Kyong-Tae;Seo Soo-Yeon;Yoon Seung Joe;Sung Ki Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.1-4
    • /
    • 2005
  • To investigate the effective seismic strengthening methods for masonry walls in developing countries, a total of four confined masonry (CM) walls were constructed and tested. In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns for the improvement of the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. The heights of inflection point considered were 0.67 and 1.11 times the height of the wall measured from the top of foundation beam. The constant vertical axial stress applied was 0 MPa. During the test, cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations was measured. From test data, it was showed that the seismic performance of confined concrete block masonry walls was significantly affected by test variables.

  • PDF

Polynomial modeling of confined compressive strength and strain of circular concrete columns

  • Tsai, Hsing-Chih
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.603-620
    • /
    • 2013
  • This paper improves genetic programming (GP) and weight genetic programming (WGP) and proposes soft-computing polynomials (SCP) for accurate prediction and visible polynomials. The proposed genetic programming system (GPS) comprises GP, WGP and SCP. To represent confined compressive strength and strain of circular concrete columns in meaningful representations, this paper conducts sensitivity analysis and applies pruning techniques. Analytical results demonstrate that all proposed models perform well in achieving good accuracy and visible formulas; notably, SCP can model problems in polynomial forms. Finally, concrete compressive strength and lateral steel ratio are identified as important to both confined compressive strength and strain of circular concrete columns. By using the suggested formulas, calculations are more accurate than those of analytical models. Moreover, a formula is applied for confined compressive strength based on current data and achieves accuracy comparable to that of neural networks.

A Farm Scale Study on the Modified Ventilation System for Improving Environmental Factors in a Confined Nursery Pig Building (무창자돈사의 환경요인 개선을 위한 변형환기시스템의 현장 평가 연구)

  • Kim, H.T.;Ko, H.J.;Kim, K.Y.;Nishizu, T.;Choi, H.L.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.175-181
    • /
    • 2006
  • Nursery pig building is imperative to provide environmental conditions favorable to maintenance of piglet health and the efficiency of growth rate. To meet the ultimate goal, it is necessary to apply proper ventilation design and construction to a confinement livestock building. This study was conducted to investigate the performance of a modified ventilation system in terms of devised slot-inlet (modification I) and exhaust fan (modification II) to improve air change rate in a confined nursery pig building, with dimension of 5.9 m(W) ${\times}$ 12.6 m(L) ${\times}$ 2.2 m(H) in an Darby Genetic Station. The experiment was carried out in August, especially when the outdoor peak temperature were above $30^{\circ}C$ and the measured indoor environmental factors were temperature, air velocity, humidity and ammonia concentration which have been known to affect the piglet health and growth. There was no difference in indoor temperature between the original and modified ventilation systems, however the air velocity and ammonia concentration in confined nursery pig building with modified ventilation system were, in most cases, better performance than original ventilation system. Therefore, it was concluded that the slot-inlet system that kept indoor environmental factors pertinent and had an economic advantage, should be considered as a ventilation system for decreasing sensible heat from piglet in confined nursery pig building during extreme summer season.