• Title/Summary/Keyword: confined columns

Search Result 256, Processing Time 0.032 seconds

Computer based estimation of backbone curves for hysteretic Response of reinforced concrete columns under static cyclic lateral loads

  • Rizwan, M.;Chaudhary, M.T.A.;Ilyas, M.;Hussain, Raja Rizwan;Stacey, T.R.
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.193-209
    • /
    • 2014
  • Cyclic test of the columns is of practical relevance to the performance of compression members during an earthquake loading. The strength, ductility and energy absorption capabilities of reinforced concrete (RC) columns subjected to cyclic loading have been estimated by many researchers. These characteristics are not normally inherent in plain concrete but can be achieved by effectively confining columns through transverse reinforcement. An extensive experimental program, in which performance of four RC columns detailed according to provisions of ACI-318-08 was studied in contrast with that of four columns confined by a new proposed technique. This paper presents performance of columns reinforced by standard detailing and cast with 25 and 32 MPa concrete. The experimentally achieved load-displacement hysteresis and backbone curves of two columns are presented. The two approaches which work in conjunction with Response 2000 have been suggested to draw analytical back bone curves of RC columns. The experimental and analytical backbone curves are found in good agreement. This investigation gives a detail insight of the response of RC columns subjected to cyclic loads during their service life. The suggested analytical procedures will be available to the engineers involved in design to appraise the capacity of RC columns.

Nonlinear Analysis of RC Bridge Columns for Ductility Evaluation (철근콘크리트 교각의 연성도 평가를 위한 비선형해석)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.39-49
    • /
    • 2003
  • This research is a part of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. A nonlinear analytical method is proposed to obtain moment-curvature relationship and lateral load-displacement relationship. Various analytical models that contribute seismic behavior of reinforced concrete bridge columns are adopted and modified by comparing quasi-static test results of reinforced concrete columns with spirals of circular hoops. The analysis adopts confined concrete model, longitudinal reinforcement test result of reinforced concrete columns with spirals or circular hoops. The analysis adopts confined concrete model, etc. The results obtained using the propose analytical method agree well with test results and give conservative estimations particularly for deformation capacity and ductility.

Evaluation and comparison of GRP and FRP applications on the behavior of RCCs made of NC and HSC

  • Shafieinia, Mohsen;Sajedi, Fathollah
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.495-506
    • /
    • 2019
  • This paper presents the results of axial pressure testing on reinforced concrete columns (RCCs) filled with confined normal concrete (NC) and high-strength concrete (HSC) using glass-fiber reinforced plastic pipes (GRP) casing as well as fiber reinforced polymer (FRP). This study aims to evaluate the behavior and mechanical properties of columns confined with GRP casing and FRP wrapping under pressure loads. The major parameters in the experiments were the type of concrete, the effect of GRP casing and FRP wrapping, as well as the number of FRP layers. 12 cylindrical RCCs (150*600) mm were prepared and divided into two groups, NC and HSC, and each group was divided into two parts. In each part, one column was without FRP strengthening layer, a column was wrapped with one FRP layer and another column with two FRP layers. All columns were tested under concentrated compression load. The results of the study showed that the utilization of FRP wrapping and GRP casing improved compression capacity and ductility of RCCs. The addition of one and two layers-FRP wrapping increased compression capacity in the NC group to an average of 18.5% and 26.5% and to an average of 10.2% and 24.8% in the HSC group. Meanwhile, the utilization of GRP casing increased the compression capacity of the columns by 4 times in the NC group and 3.38 times in the HSC group. The results indicated that although both FRP wrapping and GRP casing result in confinement, the GRP casing resulted in increased compression capacity and ductility of the RCCs due to higher confinement. Furthermore, the confinement effect was higher on columns made with NC.

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete column subjected to eccentric compression

  • Yu, Feng;Kong, Zhengyi;Li, Deguang;Vu, Quang-Viet
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.151-159
    • /
    • 2020
  • An experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete columns subjected to eccentric compression was carried out. Two parameters, such as the CFRP strips spacing and eccentricity of axial load, were considered. The experimental results showed that all specimens failed by compressive yield of longitudinal steel bar and rupture of CFRP strips. The bearing capacity of specimen decreases as the eccentricity or the CFRP strips spacing increases. The stress-strain relation of specimens undergoes two stages: parabolic and linear stages. In the parabolic stage, the slope of stress-strain curve decreases gradually as the eccentricity of axial loading increases while the CFRP strips spacing has little effect on the slope of stress-strain curve. For the linear stage, the slope of stress-strain curve decreases as the eccentricity of axial load or the CFRP strips spacing increases. A model for predicting the stress-strain relation of columns under eccentric compression is proposed and it agrees well with various test data.

Nonlinear Analysis of Internally Confined Hollow CFT Columns (내부 구속 중공 CFT 기둥의 비선형 해석)

  • Han, Taek-Hee;Won, Deok-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.439-454
    • /
    • 2011
  • A nonlinear analysis model for internally confined hollow concrete-filled tube (ICH CFT) columns was suggested and was verified by the test results obtained by the previous researchers. The suggested model considered the confining effect and nonlinearity of concrete. The verified results showed that the suggested model was reasonable and reliable for predicting the behavior of an ICH CFT column. Additionally, a simple parametric study was carried out. The strength of concrete, the hollow ratio of a column, and the thickness of an inner tube were selected as parameters affecting the behavior of an ICH CFT column. The analysis results showed that the concrete strength and the thickness of the inner tube affect the axial strength and moment capacity of the column while the hollow ratio affects only its axial strength.

Identification of failure mechanisms for CFRP-confined circular concrete-filled steel tubular columns through acoustic emission signals

  • Li, Dongsheng;Du, Fangzhu;Chen, Zhi;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.525-540
    • /
    • 2016
  • The CFRP-confined circular concrete-filled steel tubular column is composed of concrete, steel, and CFRP. Its failure mechanics are complex. The most important difficulties are lack of an available method to establish a relationship between a specific damage mechanism and its acoustic emission (AE) characteristic parameter. In this study, AE technique was used to monitor the evolution of damage in CFRP-confined circular concrete-filled steel tubular columns. A fuzzy c-means method was developed to determine the relationship between the AE signal and failure mechanisms. Cluster analysis results indicate that the main AE sources include five types: matrix cracking, debonding, fiber fracture, steel buckling, and concrete crushing. This technology can not only totally separate five types of damage sources, but also make it easier to judge the damage evolution process. Furthermore, typical damage waveforms were analyzed through wavelet analysis based on the cluster results, and the damage modes were determined according to the frequency distribution of AE signals.

Experiments and Analysis of Concrete Columns Confined with Lateral Reinforcements (횡구속된 콘크리트 기둥의 실험 및 해석)

  • 송하원;최동휴;변근주;김기수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.167-178
    • /
    • 1998
  • 횡방향철근에 의하여 적절히 구속된 콘크리트 기둥은 강도증가 및 연성의 확보면에서 유리하다. 본 연구의 목적은 횡방향철근에 의하여 구속된 코아콘크리트의 크기,횡방향철근의 간격비 및 체적철근비 등의 변화에 따른 콘크리트 기둥의 극한강도를 포함한 최대하중 이전의 거동 및 최대하중 이후의 거동을 실험적, 해석적으로 고찰함으로써 콘크리트 기둥의 구속효과정도를 규명하려는데 있다. 본 연구에서는 횡구속된 콘크리트 기둥모형의 압축재하실험을 수행하였으며, 최대하중 이전의 거동에 대하여 연속체적 파괴와 소성을 고려한 3차원 모델링을 통한유한요소해석을 실시하였다. 또한 횡구속된 콘크리트 기둥의 변형률국소화 모델에 의한 파괴해석을 통하여 구속된 콘크리트 기둥의 최대하중 이후의 거동을 재현하였다. 해석결과는 압축재하실험의 결과와 비교, 분석되었으며, 이에 따른 구속효과를 규명하였다.

띠철근 강도가 고강도 철근콘크리트 기둥의 휨거동에 미치는 영향에 관한 실험적 연구

  • 문호권;양근혁;이영호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.387-392
    • /
    • 2000
  • This paper presents an experimental study on the behavior of high strength concrete columns confined by rectangular ties under combined axial load lateral load. This test was carried on the twelve reinforced concrete columns with $200\times200\times200$mm size subjected to combined axial load and lateral load. Effects of key variables such as the axial load level, the tie yield strength, the longitudinal reinforcement ratio are studied in this research program. The results of this study show that the efficiency of high strength lateral ties increase under high axial load level over 0.4f(아래첨자) A(아래 첨자). Also we found that well confined concrete column shows second peak monent after spalling of cover concrete under high axial load level.

  • PDF