• Title/Summary/Keyword: cone of confusion

Search Result 6, Processing Time 0.019 seconds

Cone Morphological Variation of the Picea jezoensis Complex in Eastern Asia

  • Park, Yeong-Dae;Chang, Kae-Sun;Jin, Guang Ze;Kim, Hui;Chang, Chin-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.235-243
    • /
    • 2010
  • Picea jezoensis with several infraspecific taxa is indigenous to Eastern Asia and the Far East of Russia. Although these taxa are very common, the taxonomic confusion surrounding this complex is reflected in ambiguity of the various taxonomic treatments currently used. Patterns of intraspecific variations of cone morphology and recognition of taxa within the P. jezoensis complex were investigated from 175 individuals. Morphological variation of cone characters was determined by the univariate analysis to be insignificant in separating most previously recognized infraspecific taxa in Korea, China, Russia, and Japan. Our statistical analysis showed that cones from northern populations were larger and wider than those from southern populations. Individuals from South Korea were predominantly smaller even than those from Honshu of Japan which were previously recognized as var. hondoensis. All measured characters appeared to show some clinal variation with changes in latitude, and a distinctive trend was evident. Consequently var. hondoensis, var. koreana, and var. microsperma cannot retain their infraspecific state within the P. jezoensis complex.

Improvement of front-back sound localization characteristics in headphone-based 3D sound generation (헤드폰 기반의 입체음향 생성에서 앞/뒤 음상정위 특성 개선)

  • 김경훈;김시호;배건성;최송인;박만호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1142-1148
    • /
    • 2004
  • A binaural filtering method using HRTF DB is generally used to make the headphone-based 3D sound. But it can make some confusion between front and back directions or between up and down directions due to the non-individual HRTF depending on each listener. To reduce the confusion of sound image localization, we propose a new method to boost the spectral cue by modifying HRTF spectra with spectrum difference between front and back directions. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methods

Improvement of virtual speaker localization characteristics using grouped HRTF (머리전달함수의 그룹화를 이용한 가상 스피커의 정위감 개선)

  • Seo, Bo-Kug;Cha, Hyung-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.671-676
    • /
    • 2006
  • A convolution with HRTF DB and the original sound is generally used to make the method of sound image localization for virtual speaker realization. But it can decline localization by the confusion between up and down or front and back directions due to the non-individual HRTF depending on each listener. In this paper, we study a virtual speaker using a new HRTF, which is grouping the HRTF around the virtual speaker to improve localization between up and down or front and back directions. To effective HRTF grouping, we decide the location and number of HRTF using informal listening test. A performance test result of virtual speaker using the grouped HRTF shows that the proposed method improves the front-back and up-down sound localization characteristics much better than the conventional methods.

A Study on Enhancement of 3D Sound Using Improved HRTFS (개선된 머리전달함수를 이용한 3차원 입체음향 성능 개선 연구)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.557-565
    • /
    • 2009
  • To perceive the direction and the distance of a sound, we always use a couple of information. Head Related Transfer Function (HRTF) contains the information that sound arrives from a sound source to the ears of the listener, like differences of level, phase and frequency spectrum. For a reproduction system using 2 channels, we apply HRTF to many algorithms which make 3d sound. But it causes a problem to localize a sound source around a certain places which is called the cone-of-confusion. In this paper, we proposed the new algorithm to reduce the confusion of sound image localization. The difference of frequency spectrum and psychoacoustics theory are used to boost the spectral cue among each directions. To confirm the performance of the algorithm, informal listening tests are carried out. As a result, we can make the improved 3d sound in 2 channel system based on a headphone. Also sound quality of improved 3d sound is much better than conventional methods.

HRTF Enhancement Algorithm for Stereo ground Systems (스테레오 시스템을 위한 머리전달함수의 개선)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-214
    • /
    • 2008
  • To create 3D sound, we usually use two methods which are two channels or multichannel sound systems. Because of cost and space problems, we prefer two channel sound system to multi-channel. Using a headphone or two speakers, the most typical method to create 3D sound effects is a technology of head related transfer function (HRTF) which contains the information that sound arrives from a sound source to the ears of the listener. But it causes a problem to localize a sound source around a certain places which is called cone-of-confusion. In this paper, we proposed the new algorithm to reduce the confusion of sound image localization. HRTF grouping and psychoacoustics theory are used to boost the spectral cue with spectrum difference among each directions. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than conventional methods.

Improvement of Head Related Transfer Function to Create Realistic 3D Sound (현실감있는 입체음향 생성을 위한 머리전달함수의 개선)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.381-386
    • /
    • 2008
  • Virtual 3D audio methods that create 3D sound effects are researched highly for multimedia devices using 2 speakers or headphone. The most typical method to create 3D effects is a technology through use of head related transfer function (HRTF) which contains the information that sound arrives from a sound source to the ears of the listener. But it can decline some 3D effects by cone of confusion between front and back directions due to the non-individual HRTF depending on each listener. In this paper, we propose a new method to use psychoacoustic theory that creates realistic 3D audio. In order to improve 3D sound, we calculate the excitation energy of each symmetric HRTF and extract the ratio of energy of each bark range. Informal listening tests show that the proposed method improves the front-bach sound localization characteristics much better than the conventional methods.