• Title/Summary/Keyword: cone model

Search Result 371, Processing Time 0.025 seconds

GEOMETRICAL IMPLICATION OF THE CME EARTHWARD DIRECTION PARAMETER AND ITS COMPARISON WITH CONE MODEL PARAMETERS

  • Moon, Y.J.;Kim, R.S.;Cho, K.S.
    • 천문학회지
    • /
    • 제42권2호
    • /
    • pp.27-32
    • /
    • 2009
  • Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.

Comparison to Cone Models for Halo Coronal Mass Ejections

  • Na, Hyeon-Ock;Moon, Yong-Jae
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.28.3-28.3
    • /
    • 2011
  • Halo coronal mass ejections (HCMEs) are mainly responsible for the most severe geomagnetic storms. To minimize the projection effect of the HCMEs observed by coronagraphs, several cone models have been suggested. These models allow us to determine the geometrical and kinematic parameters of HCMEs : radial speed, source location, angular width, and the angle between the central axis of the cone and the plane of the sky. In this study, we compare these parameters form two representative cone models (the ice-cream cone model and the asymmetric cone model) using well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (rms error) between observed projection speeds and calculated projection speeds for both cone models. It is found that the average rms speed error (89 km/s) of the asymmetric cone model is a little smaller than that (107 km/s) of the ice-cream cone models, implying that the radial speeds from both models are reasonably estimated. We also find that the radial speeds obtained from two models are similar to each other with the correlation coefficient of about 0.8.

  • PDF

조석 영향에 의한 해성준설토의 강도변화 특성에 관한 연구 (Characteristics of the Strength Change of Dredged Soil by Tide Influence)

  • 천병식;김봉수;이원택;도종남
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1071-1074
    • /
    • 2008
  • In this study, the behavior of dredged soil was measured by repeated tide and analyzed the change of settlements and cone penetration resistance by centrifuge model about dredged soil of Kunsan-Janghang site that maximum tidal range is 7.4m. Consequently the settlements of dredged soil by repeated tide in the 2nd month was 0.489 m. After 12th month, the total settlements was 0.524 m in the model. It meaned the settlements of dredged soil by repeated tide in the 2th month was 80% of the settlements. Also, with the lapse of time, cone penetration resistance increased centrifuge model test for catching the strength change of dredged soil by repeated tide. After 10th month, there were not almost changes. cone penetration resistance in 10th month was measured more 3.5~5.6 times than that in its early stages. Also, with the lapse of time, cone penetration resistance increased almost linearly. And, when we surveyed the relation between cone penetration resistance and time, as depth increased, cone penetration resistance rose.

  • PDF

Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구 (A Reliability Study on Estimating Shear Strength of Marine Soil using CPT)

  • 이인모;이명재
    • 한국지반공학회지:지반
    • /
    • 제3권2호
    • /
    • pp.17-28
    • /
    • 1987
  • 본연구에서는 해양토질의 전단강도 산정에 대한 Cone관입시험의 신뇌도를 조사하였다. 사질토에 대하여는 내부마찰각의 불확정성을 조사하였으며, 불확정성에는 자료의 공간적 변화와 해석에 사용 되는 공식의 모텔오차 등이 있고, 그중 해석모텔의 오차가 가장 큰 불확정성이었다. 해석 방법마다 구한 내부마찰각이 서로 다르므로, 해석결과를 종합할 수 있는 주관적 견해개념(subjective opinion) 을 도입하였다. Cone관입시험을 이용하여 잡토지반에서 비배빙전단강도를 산정하기 위해서는 실훈시험이나 현장베인 시험으로 구한 전단강도와 Cone 저항력의 경험적인 관계를 이용하여야 한다. 비배수전단강도의 불확정성은 Cone 계수(Nk)의 자료 산포, Nk의 모델 오차, 이방성과 Cone 저항력의 공간적 변화 등에 기인하며, Nk의 자료산포가 가장 큰 불확정성이었다. Nk값의 산정에 이용되는 비교강도시험은 실내시험보다는 현장베인시험의 신뢰성이 더 큰 것으로 나타났다.

  • PDF

차압식 벤튜리콘 유량계에 대한 유동해석 (Numerical analysis of the differential pressure venturi-cone flowmeter)

  • 윤준용;맹주성;이정원
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.714-720
    • /
    • 1998
  • The differential pressure venturi-cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turn-down ratio, low headless, short installation pipe length requirement, and etc. Like other differential pressure flowmeters, the venturi-cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we used Reynolds-averaged Wavier-Stokes equations and k-$\omega$ turbulence model. The equations were fully transformed into the computational domain, the pressure-velocity coupling was made through SIMPLER algorithm, and the equations were discretized using finite analytic solutions of the liberalized equations(Finite Analytic Method). To control the separation phenomenon on the cone surface, we proposed a new shape of cone, and analyzed the flowfield in the new flowmeter system, and found the improvement on the performance of the new cone flowmeter.

  • PDF

원심모형실험용 소형 콘 개발 및 콘 선단저항치 특성에 관한 연구 (Development of Miniature Cone and Characteristics of Cone Tip Resistance in Centrifuge Model Tests)

  • 김재현;김동준;김동수;추연욱
    • 대한토목학회논문집
    • /
    • 제33권2호
    • /
    • pp.631-642
    • /
    • 2013
  • 현장지반의 공학적 특성을 파악하기 위한 콘 관입시험(Cone Penetration Test; CPT)은 원지반의 연속적인 강도 특성을 분석하여 다양한 지반변수를 손쉽게 획득할 수 있다는 점에서 널리 활용되고 있으며, 원심모형실험에서도 널리 활용되고 있다. 본 연구에서는 원심모형실험에서 콘선단저항치를 계측할 수 있는 직경이 10 mm인 소형 콘을 개발하고 원심모형실험에서의 적용성을 평가하였다. 개발된 콘으로 4자유도 로봇을 활용하여 원심모형 가속 상태에서 콘 관입시험을 수행하였다. 이 때, 원심가속도 수준을 4회 변화시켜 다양한 유효응력상태에서 콘 관입시험을 실험을 수행하였다. 그 결과, 얕은 관입깊이의 동일한 유효응력에서 콘 선단저항치는 g-level에 영향을 받으며, 선단저항치가 임계 깊이 도달하는 깊이는 g-level과 상대밀도가 커질수록 깊어짐을 확인하였다. 또한, 각 실험에서 임계 깊이에 도달한 선단저항치와 실내실험에서 획득한 지반물성을 이용하여 기존 경험식과 비교하였다.

Comparison of the radial velocities of Halo CMEs based on a flux rope model and an ice cream cone model

  • Kim, Tae-Hyeon;Moon, Yong-Jae;Na, Hyeon-Ock
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • Halo Coronal Mass Ejections (HCMEs) are crucial for space weather, since they can produce severe geomagnetic storms when they interact with the Earth's magnetosphere. It is thus very important to infer their directions, radial velocities, and their three-dimensional structures. In this study, we apply two different models to HCMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using STEREO/SECCHI data. In addition, we use the flux rope model with zero separation angle of flux rope, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from three models have very good correlations (R>0.9) one another. We are extending this comparison to other partial halo CMEs observed by STEREO and SOHO.

  • PDF

Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity

  • Noroozi, Reza;Barati, Abbas;Kazemi, Amin;Norouzi, Saeed;Hadi, Amin
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.13-24
    • /
    • 2020
  • In this paper, for the first time based on the nonlocal strain gradient theory the effect of size dependency in torsional vibration of bi-direction functionally graded (FG) nonlinear nano-cone is study. The material properties were assumed to vary according to the arbitrary function in radial and axial directions. The Navier equation and boundary conditions of the size-dependent bidirectional FG nonlinear nano-cone were derived by Hamilton's principle. These equations were solved by employing the generalized differential quadrature method (GDQM). The presented model can turn into the classical model if the material length scale parameters are taken to be zero. The effects of some parameters, such as inhomogeneity constant, cross-sectional area parameter and small-scale parameters, were studied. As an essential result of this study can be stated that an FG nano-cone model based on the nonlocal elasticity theory behaves softer and based on the strain gradient theory behaves harder.

원추형 자기 베어링 지지 무마찰 구동장치의 위치제어 (Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings)

  • 정호섭;이종원
    • 제어로봇시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF

Forecast Driven Simulation Model for Service Quality Improvement of the Emergency Department in the Moses H. Cone Memorial Hospital

  • Park, Eui-H.;Park, Jin-Suh;Ntuen, Celestine;Kim, Dae-Beom;Johnson, Kendall
    • International Journal of Quality Innovation
    • /
    • 제9권3호
    • /
    • pp.1-14
    • /
    • 2008
  • Patient satisfaction with the Emergency Department(ED) in a hospital is related to the length of stay, and especially to the amount of waiting time for medical treatments. ED overcrowding decreases quality and efficiency, therefore affecting hospitals' profitability. This paper presents a forecasting and simulation model for resource management of the ED at Moses H. Cone Memorial Hospital. A linear regression forecasting model is proposed to predict the number of ED patient arrivals, and then a simulation model is provided to estimate the length of stay of ED patients, system throughput, and the utilization of resources such as triage nurses, patient beds, registered nurses, and medical doctors. The near future load level of each resource is presented using the proposed models.