• Title/Summary/Keyword: conductivity modulation measurement

Search Result 3, Processing Time 0.019 seconds

A New Method for the Determination of Carrier Lifetime in Silicon Wafers from Conductivity Modulation Measurements

  • Elani, Ussama A.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.311-317
    • /
    • 2008
  • The measurement of dark ${\sigma}_D$, gamma-induced ${\sigma}_{\gamma}$ conductivities and the expected conductivity modulation ${\Delta}_{\sigma}$ in silicon wafers/samples is studied for developing a new technique for carrier lifetime evaluation. In this paper a simple method is introduced to find the carrier lifetime variations with the measured conductivity and conductivity modulation under dark and gamma irradiation conditions. It will be concluded that this simple method enables us to give an improved wafer evaluation, processing and quality control in the field of photovoltaic materials and other electronic devices.

A Theoretical Study for the Thermal Conductivity Measurement of Anisotropic Material using Photothermal Deflection Spectroscopy (광열편향법을 이용한 이방성 재료의 열전도계수 측정에 관한 이론적 연구)

  • Jeon, Pil-Soo;Yoo, Jai-Suk;Kim, Hyun-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2465-2470
    • /
    • 2007
  • We have analyzed the three-dimensional thermal conduction in anisotropic materials using nonsymmetric-Fourier transforms. And a complete theoretical treatment of the photothermal deflection spectroscopy has been performed for thermal conductivity measurement in anisotropic medium. Thermal conductivity tensor was determined by the deflection angle and phase angle with the relative position between the heating and probe beams. The influence of the parameters, such as modulation frequency of the heating beam, the thermal conductivity tensor, was investigated.

  • PDF

A Study on Characteristic Improvement of IGBT with P-floating Layer

  • Kyoung, Sinsu;Jung, Eun Sik;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.686-694
    • /
    • 2014
  • A power semiconductor device, usually used as a switch or rectifier, is very significant in the modern power industry. The power semiconductor, in terms of its physical properties, requires a high breakdown voltage to turn off, a low on-state resistance to reduce static loss, and a fast switching speed to reduce dynamic loss. Among those parameters, the breakdown voltage and on-state resistance rely on the doping concentration of the drift region in the power semiconductor, this effect can be more important for a higher voltage device. Although the low doping concentration in the drift region increases the breakdown voltage, the on-state resistance that is increased along with it makes the static loss characteristic deteriorate. On the other hand, although the high doping concentration in the drift region reduces on-state resistance, the breakdown voltage is decreased, which limits the scope of its applications. This addresses the fact that breakdown voltage and on-state resistance are in a trade-off relationship with a parameter of the doping concentration in the drift region. Such a trade-off relationship is a hindrance to the development of power semiconductor devices that have idealistic characteristics. In this study, a novel structure is proposed for the Insulated Gate Bipolar Transistor (IGBT) device that uses conductivity modulation, which makes it possible to increase the breakdown voltage without changing the on-state resistance through use of a P-floating layer. More specifically in the proposed IGBT structure, a P-floating layer was inserted into the drift region, which results in an alleviation of the trade-off relationship between the on-state resistance and the breakdown voltage. The increase of breakdown voltage in the proposed IGBT structure has been analyzed both theoretically and through simulations, and it is verified through measurement of actual samples.