• Title/Summary/Keyword: conductivity measurement

Search Result 627, Processing Time 0.025 seconds

A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites (알루미나 나노섬유와 분말이 첨가된 에폭시 복합재료의 열전도도 특성 및 파괴인성에 대한 연구)

  • Choi, Jeong-Ran;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • In this work, the effect of alumina nanofibers on thermal conductivity and fracture toughness of alumina nanofibers and powder filled epoxy (EP) composites were investigated with varying alumina nanofiber content from 20 to 100 phr. Thermal conductivity was tested using a laser flash analysis (LFA). The fracture toughness of the composites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The mophologies were observed by scanning electron microscopy (SEM). From the results, it was found that the thermal conductivity was enhanced with increasing alumina nanofiber content, which played a key factor to determine the thermal conductivity. The $K_{IC}$ value was increased with increasing alumina nanofiber content, whereas the value decreased above 40 phr alumina nanofiber content. This was probably considered that the alumina nanofiber entangled each other in EP due to an excess of alumina nanofibers.

Influence of Electroless Ni-plated MWCNTs on Thermal Conductivity and Fracture Toughness of MWCNTs/Al2O3/Epoxy Composites (무전해 니켈도금된 다중벽 탄소나노튜브의 첨가가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향)

  • Choi, Jeong-Ran;Lee, Young-Sil;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.449-454
    • /
    • 2013
  • In this work, the effect of electroless Ni-plating of multi-walled carbon nanotubes (MWCNTs) on thermal conductivity and fracture toughness properties of MWCNTs/$Al_2O_3$/epoxy composites was investigated. The surface properties of the Ni-plated MWCNTs were determined by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), and X-ray diffraction (XRD) analyses. Thermal conductivity was tested using a thermal conductivity measuring system. The fracture toughness of the composites was carried out through the critical stress intensity factor ($K_{IC}$) measurement. As a result, the electroless Ni-plated MWCNTs led to a significant change of surface characteristics of the MWCNTs. Thermal conductivity and fracture toughness of the MWCNTs/$Al_2O_3$/epoxy composites were greater than those of non-treated ones. These results were probably due to the improvement of intermolecular interaction between the Ni-MWCNTs and the matrix resins.

Measurement of Partial Conductivity of 8YSZ by Hebb-Wagner Polarization Method

  • Lim, Dae-Kwang;Guk, Jae-Geun;Choi, Hyen-Seok;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.299-303
    • /
    • 2015
  • The electrolyte is an important component in determining the performance of Fuel Cells. Especially, investigation of the conduction properties of electrolytes plays a key role in determining the performance of the electrolyte. The electrochemical properties of Yttrium stabilized zirconia (YSZ) were measured to allow the use of this material as an electrolyte for solid oxide fuel cells (SOFC) in the temperature range of $700-1000^{\circ}C$ and in $0.21{\leq}pO_2/atm{\leq}10^{-23}$. A Hebb-Wagner polarization experimental cell was optimally manufactured; here we discuss typical problems associated with making cells. The partial conductivities due to electrons and holes for 8YSZ, which is known as a superior oxygen conductor, were obtained using I-V characteristics based on the Hebb-Wagner polarization method. Activation energies for holes and electrons are $3.99{\pm}0.17eV$ and $1.70{\pm}0.06eV$ respectively. Further, we calculated the oxygen ion conductivity with electron, hole, and total conductivity, which was obtained by DC four probe conductivity measurements. The oxygen ion conductivity was dependent on the temperature; the activation energy was $0.80{\pm}0.10eV$. The electrolyte domain was determined from the top limit, bottom limit, and boundary (p=n) of the oxygen partial pressure. As a result, the electrolyte domain was widely presented in an extensive range of oxygen partial pressures and temperatures.

Thermal Properties of Diglycidyl Ether of Terephthalylidene-bis-(4-amino-3-methylphenol) (Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol)의 열적 성질에 대한 연구)

  • Hyun, Ha-Neul;Choi, Ji-Woo;Cho, Seung-Hyun
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.53-60
    • /
    • 2022
  • This study uses Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol) (DGETAM), an amine hardener 4,4'-diaminodiphenylethane (DDE) and cationic catalyst N-benzylpyrazinium hexafluoroantimonate (BPH) to make epoxy film. For analysis, 1H_NMR and FT-IR were used to verify proper synthesis, and the liquid crystallinity of DGETAM was checked using Differntial Scanning Calorimetry and Polarized Optical Microscopy. Thermal conductivity of the sample was measured using Laser Flash Apparatus. Thermal stability as well as thermal conductivity is important when used as a packaging material. Activated energy is the energy needed to generate a response, which can be used to estimate the energy required to maintain physical properties. It was obtained using the Arrhenius equation based on the data measured by isothermal decomposition using Thermogravimetric Analysis. Measurement of the thermal conductivity of epoxy films showed higher thermal conductivity when DDE was used, and it was found that thermal conductivity had an effect on thermal stability, given that it represented an activation energy similar to a film with BPH upon 5% decomposition.

The Development of Multi-channel Electrical Conductivity Monitoring System and its Application in the Coastal Aquifer (다채널 전기전도도 모니터링 시스템의 개발과 연안지역 공내수 모니터링에 대한 적용 사례)

  • Shin, Je-Hyun;Hwang, Se-Ho;Park, Kwon-Gyu;Park, Yun-Seong;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.156-162
    • /
    • 2005
  • Particularly in research related to seawater intrusion the change of fluid electrical conductivity is one of major concerns, and effective monitoring can help to optimize a water pumping performance in coastal areas. Special considerations should be given to the mounting of sensors at proper depth during the monitoring design since the vertical distribution of fluid electrical conductivity is sensitive to the characteristics of seawater intrusion zone. This tells us the multi-channel electrical conductivity monitoring is of paramount consequence. It, however, is a rare event when this approach becomes routinely available in that commonly used commercial stand-alone type sensors are very expensive and inadequate for a long term monitoring of electrical conductivity or water level due to their restricted storage and difficulty of real-time control. For this reason, we have developed a real-time monitoring system that could meet these requirements. This system is user friendly, cost-effective, and easy to control measurement parameters - sampling interval, acquisition range, and others. And this devised system has been utilized for the electrical conductivity monitoring in boreholes, Yeonggwang-gun, Korea. Monitoring has been consecutively executed for 24 hours, and the responses of electrical conductivity at some channels have been regularly increased or decreased while pumping up water. It, with well logging data implemented before/after pumping water, verifies that electrical conductivity changes in the specified depths originate from fluid movements through sand layer or permeable fractured rock. Eventually, the multi-channel electrical conductivity monitoring system makes an effective key to secure groundwater resources in coastal areas.

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Measurement of Dielectric Hysteresis and Current Hysteresis for Determining Ferroelectricity (유전이력곡선 및 전류이력곡선을 통한 강유전성 확인 방법)

  • 박재환;박재관;김윤호
    • Korean Journal of Crystallography
    • /
    • v.12 no.2
    • /
    • pp.65-91
    • /
    • 2001
  • Errors and its compensation in the measurement of dielectric hysteresis in ferroelectric by using Sawyer-Tower circuit were discussed. When ferroelectrics are lossy, remanent polarization and coercive field are likely to be over-estimated. As the DC conductivity and measuring time increases, measurement errors in ferroelectric properties increase. Current hysteresis measurement was suggested for compensation such errors.

  • PDF

A study on in-process measurement of hardening depth for LASER surface hardening process control (강재의 레이저 표면경화 공정제어를 위한 경화층깊이의 실시간 측정에 관한 연구)

  • 우현구;박영준;조형석;한유희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.252-257
    • /
    • 1991
  • This paper proposed that the eddy-current measurement method can be used a means of in-process measuring the hardening depth in Laser surface treatment process. Also, this paper deal with the numerical analysis of magnetic flux distribution and experimental result of measurement. In Laser heat treatment process of steels, a thin layer of the substrate is rapidly heated to austenitizing temperature and subsequently cooled at a very fast rate due to the self-quenching by heat conduction into the bulk body, to produce a martensite structure which have low magnetic permeability. The eddy-current measurement method depends on the properties of material to be measured such as electric conductivity, magnetic permeability and geometry. In this paper, the hardening depth was measured by detecting relevant magnetic permeability changes caused by heat treatment of steels.

  • PDF

Measurement of Gas Concentration and flow Rate Using Hot Wire (열선을 이용한 혼합기체의 농도와 유량의 측정)

  • Kim, Young-Han;Park, Jong-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.407-412
    • /
    • 2002
  • A measurement device for gas concentration and flow rate using hot wire is developed for the utilization in industrial applications. The device has two cells of measuring and reference, and a bridge circuit is installed to detect electric current through the hot wire in the cells. An amplification of the signal and conversion to digital output are conducted for the on-line measurement with a personal computer. The flow rate of air and carbon dioxide gas is separately measured for the performance examination of the device. Also, the concentration of air-carbon dioxide and carbon dioxide-argon mixtures is determined for the same evaluation. The outcome of the performance test indicates that the accuracy and stability of the device is satisfactory for the purpose of industrial applications.