• Title/Summary/Keyword: conductivity measurement

Search Result 627, Processing Time 0.026 seconds

Measuring Thermal Conductivity of Nanofluids by Steady State Method (정상상태 방법을 이용한 나노유체의 열전도율 측정)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.898-904
    • /
    • 2006
  • A new method measuring thermal conductivity of fluids is proposed in this research. It is based on the steady state heat transfer from a hot central cylinder to a cold outer cylinder located concentrically. This method guarantees more stable measurement than conventional THM(transient hot-wire method) due to its simplicity of theoretical principle. Measurements was made for the three nanofluid samples with different particle concentration of pure, 2% and 4%. Nanofluids are made by mixing the pure transformer oil with AlN nano particles. Design of the sensor module and experimental procedures are explained and comparison of the measuring data between present method and THM was made in detail.

Soil-Water Characteristic Curve of Weathered Granite Soils in Pocheon Area using Flow Pump Technique (플로우 펌프기법을 이용한 포천지역 화강 풍화토의 함수특성곡선)

  • Lee, Kang-Il;Lee, Joon-Yong;Back, Won-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Flow pump technique was used in order to determine the soil-water characteristic curve of weathered granite soils in Pocheon area. This technique enables measurement to be more convenient and accurate as it is based on the CU condition of triaxial compression test. Besides, it is also able to measure dry and moisture curves continuously since the test is controled by means of a computer automatically. In this study, not only a hydraulic conductivity of weathered granite soils at fully saturated state in Pocheon area, but also a soil-water characteristic curve throughout unsaturate flow tests were determined. In addition, Brooks and Corey's model and Genuchten's model were used to simulate the soil-water characteristic curve. On the basis of the simulation an unsaturate hydraulic conductivity was predicted.

Electrochemical Characteristics of Activated Carbon Electrode for Supercapacitor (Supercapacitor용 활성탄 전극의 전기 화학적 특성)

  • 김경민;이용욱;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.11a
    • /
    • pp.273-277
    • /
    • 2002
  • In the electrode fabrication of unit cell, we found that optimal the electrochemical characteristics were obtained with at 90 wt.% of activated carbon(BP-20), 5 wt.% of conducting agent(Ppy, Super P) and 5 wt.% of P(VdF-co-HFP)/PVP mixed binder. The electrochemical characteristics of unit cell with Ppy improver were as follows : 37.6 F/g of specific capacitance, 0.98 $\Omega$ of AC-ESR, 2.92 Wh/kg and 6.05 Wh/L of energy density, and 754 W/kg and 1,562 W/L of power density. It was confirmed that internal resistance were reduced due to the increase of electrical conductivity and filling density by the introduction of conductivity agent, and content of conducting agent was suitable in the range of 4~6 wt.%. According to the impedance measurement of the electrode with conductivity agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance(AC-ESR), fast charge transfer rate at interface between electrode and electrolyte, and low RC time constant.

  • PDF

Dielectric Changes During the Curing of Epoxy Resin Based on the Diglcidyl Ether of Bisphenol A (DGEBA) with Diamine

  • 김홍경;차국헌
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1329-1334
    • /
    • 1999
  • The curing characteristics of diglycidyl ether of bisphenol A (DGEBA) with diaminodiphenylmethane (DDM) as a curing agent were studied using differential scanning calorimetry (DSC), rheometrics mechanical spectrometry (RMS), and dielectric analysis (DEA). The isothermal curing kinetics measured by DSC were well represented with the generalized auto-catalytic reaction model. With the temperature sweep, the inverse relationship between complex viscosity measured by RMS and ionic conductivity obtained from DEA was established indicating that the mobility of free ions represented by the ionic conductivity in DEA measurement and the chain segment motion as revealed by the complex viscosity measured from RMS are equivalent. From isothermal curing measurements at several different temperatures, the ionic conductivity contribution was shown to be dominant in the dielectric loss factor at the early stage of cure. The contribution of the dipole relaxation in dielectric loss factor became larger as the curing further proceeded. The critical degrees of cure, at which the dipolar contribution in the dielectric loss factor starts to appear, increases as isothermal curing temperature is increased. The dielectric relaxation time at the same degree of cure was shorter for a sample cured at higher curing temperature.

Measurement of thermal conductivity of fluid by unsteady hot wire method (非定常 熱線法 에 의한 流體 의 熱傳達率 測定)

  • 고상근;양상식;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.154-161
    • /
    • 1984
  • A modified technique of the transient hot wire method to measure the thermal conductivity of fluid has been described in this paper. The thermal conductivity of fluid can be obtained by acquiring wire temperature as a function of time. Multiplication of the inverse slope of the temperature versus logarithm of time by an instrumental constant gives the thermal conductivity. The constant voltage was applied to Wheatstone bridge circuit. The wire temperature can be measured as a function of time precisely with the aid of the data acquisition system composed of a microprocessor and an analog-digital converter. The thermal conductivity of the electrically conducting fluid has been measured with the insulated hot wire coated by electrically non-conducting material. The effect of the coated insulation layer on the thermal conductivity has been examined, in which it is confirmed that the thermal conductivity of electrically conducting liquid can be determined by the transient coated hot wire method. Thermal conductivities of methanol, carbontetrachrolide, Freon-22 and glycerin have been measured at room temperature in the pressure from 0.1MPa to 35.1MPa. The experiment has been performed to compare the data from the bare and the coated wires, and the results are satisfactory.

Volume Resistivity and Thermal conductivity of Semiconducting Materials by Acetylene Black (아세틸렌블랙 함량에 따른 반도전 재료의 체적저항과 열전도 특성)

  • Yang, Jong-Seok;Lee, Kyung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.134-135
    • /
    • 2005
  • To improve mean-life and reliability of power cable, we have investigated volume resistivity and thermal conductivity showed by changing the content of acetylene black which is the component parts of semiconductive shield in underground power transmission cable. The sheets were primarily kneaded in their pellet form material samples for 5 minutes on rollers ranging between 70[$^{\circ}C$] and 100[$^{\circ}C$]. Then they were produced as sheets after pressing for 20 minutes at 180[$^{\circ}C$] with a pressure of 200[kg/cm]. The content of conductive acetylene black was the variable, and their contents were 20, 30 and 40[wt%], respectively. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the preheated oven of both $25\pm1[^{\circ}C]$ and $90\pm1[^{\circ}C]$. Thermal conductivity was measured by Nano Flash Diffusivity. The measurement temperatures of thermal conductivity using Nano Flash Diffusivity were both 25[$^{\circ}C$] and 55[$^{\circ}C$]. From these experimental results, volume resistivity was high according to an increase of the content of acetylene black. And thermal conductivity was increased to an increase of the content of acetylene black. And thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

  • PDF

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

Thermal Conductivity of Dry and Saturated Cores from Ulleung Island in a Constant Temperature and Humidity Condition (항온항습 환경에서 울릉도 시추코어의 건조·수포화 열전도도)

  • Lee, Keun-Soo;Lee, Sang Kyu;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.220-230
    • /
    • 2018
  • When thermal conductivity of rock is measured with PEDB (Portable Electronic Divided Bar) in a laboratory, it can be greatly influenced by the change of room temperature. Therefore, measuring the thermal conductivity in a thermo-hygrostat is necessary, where it can remain in its constant temperature and humidity condition. In this study, a system for thermal conductivity measurement in a thermo-hygrostat has been set up and the thermal conductivities for the 45 samples collected from GH3 and GH4 boreholes in Ulleung Island have been measured both in dry and saturated conditions. Also, the correlations between those thermal conductivities, density, and effective porosity have been discussed. As a result of correlation analysis among the thermal conductivity, density, and effective porosity, it showed higher correlation with dry samples than saturated samples. Especially, thermal conductivity ratio between saturated and dry conditions shows very high correlation ($R^2=0.90$) with effective porosity.

Study on the Thermal Conductivity of Frozen Soil Considering Various Experimental Conditions (다양한 실험조건을 고려한 동결 사질토의 열전도도 산정에 대한 연구)

  • Kim, Hee-Won;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.5-11
    • /
    • 2023
  • In analyzing geotechnical structures, the analysis fields are becoming increasingly diversified. In particular, the need for predicting the thermal behavior of ground materials has become important in fields related to soil freezing. To ensure a reliable assessment of the freezing behavior of the ground, considering the variation in the effective thermal conductivity of soil specimens under various conditions is crucial. In this study, probe experiments were conducted by varying the porosity, initial degree of saturation, and read time settings of the meter. Next, the factors influencing the effective thermal conductivity of the frozen sandy soil were evaluated. The experimental results conducted under different porosity conditions showed a tendency for the effective thermal conductivity of frozen soil to increase as the specimen's porosity decreased. However, as the degree of saturation of the specimen increased, the effective thermal conductivity also increased. The sensitivity of the meter's read time setting to the measurement of effective thermal conductivity was observed. When the read time was set to 1 min, the measured values were in a range similar to that obtained in previous studies conducted in Korea with the same soil specimen.

Factors Affecting the Electrical Properties of Bentonite Slurry (벤토나이트 슬러리의 전기적 특성에 대한 영향인자 분석)

  • Yoo, Dong-Ju;Oh, Myoung-Hak;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.21-32
    • /
    • 2006
  • Factors affecting the electrical properties of bentonite slurry were identified and electric conduction mechanism in slurry was examined. Electrical conductivity of bentonite and soil-bentonite slurry linearly increases with the bentonite content. Test result indicated that the change In electrical conductivity of slurry was mainly caused by dissolved cations from bentonite particles. The relationship between electrical conductivity and bentonite content was affected by the initial electrical conductivity of slurry solution and fine content in soil-bentonite mixture. Such influences were evaluated and the calibrated relationships were suggested. Based on the suggested relationship between electrical conductivity and bentonite content, bentonite content in various bentonite and soil-bentonite slurry can be quantitatively evaluated by using electrical conductivity measurement method.