DOI QR코드

DOI QR Code

Study on the Thermal Conductivity of Frozen Soil Considering Various Experimental Conditions

다양한 실험조건을 고려한 동결 사질토의 열전도도 산정에 대한 연구

  • Kim, Hee-Won (Dept. of Civil Engrg., Kumoh National Institute of Technology) ;
  • Go, Gyu-Hyun (Dept. of Civil Engrg., Kumoh National Institute of Technology)
  • 김희원 (금오공과대학교 토목공학과) ;
  • 고규현 (금오공과대학교 토목공학과)
  • Received : 2023.06.15
  • Accepted : 2023.07.06
  • Published : 2023.09.30

Abstract

In analyzing geotechnical structures, the analysis fields are becoming increasingly diversified. In particular, the need for predicting the thermal behavior of ground materials has become important in fields related to soil freezing. To ensure a reliable assessment of the freezing behavior of the ground, considering the variation in the effective thermal conductivity of soil specimens under various conditions is crucial. In this study, probe experiments were conducted by varying the porosity, initial degree of saturation, and read time settings of the meter. Next, the factors influencing the effective thermal conductivity of the frozen sandy soil were evaluated. The experimental results conducted under different porosity conditions showed a tendency for the effective thermal conductivity of frozen soil to increase as the specimen's porosity decreased. However, as the degree of saturation of the specimen increased, the effective thermal conductivity also increased. The sensitivity of the meter's read time setting to the measurement of effective thermal conductivity was observed. When the read time was set to 1 min, the measured values were in a range similar to that obtained in previous studies conducted in Korea with the same soil specimen.

지반구조물의 해석에 있어서 해석의 고려 대상과 분야가 점점 다변화되고 있으며, 특히 지반동결과 관련된 분야에서 지반재료의 열적거동 특성에 대한 예측의 필요성이 중요해지고 있다. 신뢰성 있는 지반의 동결거동 평가를 위해서는 다양한 조건에서의 시료의 유효 열전도도 변화에 대한 고려가 필요하다. 본 논문에서는 시료의 간극률, 초기 포화도, Read time 설정을 달리하여 탐침 실험을 수행하였고, 이를 통해 동결 사질토의 유효 열전도도에 영향을 미치는 인자들을 평가하였다. 서로 다른 간극률 조건에서 실험을 수행한 결과, 시료의 간극률이 작을수록 동결토의 유효 열전도도는 증가하는 경향이 나타났다. 반면, 시료의 포화도가 증가할수록 동결토의 유효 열전도도는 증가하였다. 유효 열전도도 측정에 대한 계측기 Read time 설정의 민감도가 존재하였는데, Read time을 1분으로 설정하여 측정하였을 때 측정값의 범위가 국내의 선행연구결과와 유사하게 나타났다.

Keywords

Acknowledgement

이 연구는 금오공과대학교 대학 연구과제비로 지원되었음(2021).

References

  1. Andersland, O. and Anderson, D. (1978), Geotechnical Engineering for Cold Regions.
  2. ASTM D5334-14, Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, 2014.
  3. Cote, J. and Konrad, J. M. (2005), "A Generalized Thermal Conductivity Model for Soils and Construction Materials", Canadian Geotechnical Journal, Vol.42, No.2, pp.443-458. https://doi.org/10.1139/t04-106
  4. De Vries, D. A. (1963), Thermal Properties of Soils. In Physics of Plant Environment. North-Holland Publishing Company, Amsterdam, The Netherlands.
  5. He, H., Dyck, M., Wang, J., and Lv, J. (2015), "Evaluation of TDR for Quantifying Heat-pulse-method-induced Ice Melting in Frozen Soils", Soil Science Society of America Journal, Vol.79, No.5, pp.1275-1288. https://doi.org/10.2136/sssaj2014.12.0499
  6. Johansen, O. (1977), Thermal Conductivity of Soils. Cold Regions Research and Engineering Lab Hanover NH.
  7. Kang, J. M., Lee, J. G., Lee, J., and Kim, Y. (2013), "Analysis of the Relationship between Unconfined Compression Strength and Shear Strength of Frozen Soils", J. Korean Geosynth. Soc., Vol.12, No.3, pp.23-29. https://doi.org/10.12814/jkgss.2013.12.3.023
  8. Kersten, M. S. (1949), Thermal properties of soils.
  9. Kim, S. Y., Hong, W. T., Hong, S. S., Baek, Y., and Lee, J. S. (2016), "Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils According to Degree of Saturations and Silt Fractions", J. Korean Geotech. Soc., Vol.32, No.12, pp.59-67. https://doi.org/10.7843/kgs.2016.32.12.59
  10. Kim, Y. C., Shin, J. W., and Kim, H. K. (2008), "Engineering Characteristics of Antarctic and Siberian Frozen Soils", In Proceedings of the Korean Geotechical Society Conference (pp.894-904). Korean Geotechnical Society.
  11. Li, S., Wang, C., Shi, L., and Yin, N. (2019), "Statistical Characteristics of the Thermal Conductivity of Frozen Clay at Different Water Contents", Results in Physics, Vol.13, pp.102179.
  12. Mickley, A.S. (1951), "The Thermal Conductivity of Moist Soil", Trans. Am. Inst. Electr. Eng, Vol.70, No.2, pp.1789-1797. https://doi.org/10.1109/T-AIEE.1951.5060631
  13. Oh, M., Lee, D., Son, Y. J., Lee, I. M., and Choi, H. (2 016), "Effect of Pore-water Salinity on Freezing Rate in Application of Rapid Artificial Ground Freezing to Deep Subsea Tunnel: Concentration of Laboratory Freezing Chamber Test", J. of Korean Tunn Undergr Sp.Assoc, Vol.18, No.5, pp.401-412. https://doi.org/10.9711/KTAJ.2016.18.5.401
  14. Penner, E. (1970), "Thermal Conductivity of Frozen Soils", CaJES, Vol.7, No.3, pp.982-987. https://doi.org/10.1139/e70-091
  15. Tian, Z., Lu, Y., Horton, R., and Ren, T. (2 016), "A Simplified de Vries-based Model to Estimate Thermal Conductivity of Unfrozen and Frozen Soil", Eur. J. Soil Sci., Vol.67, No.5, pp.564-572. https://doi.org/10.1111/ejss.12366
  16. Wright, J.F. Nixon, F.M., Dallimore, S.R., Henninges, J., and Cote M.M. (2005), "Thermal Conductivity of Sediments Within the Gas-hydrate-bearing Interval at the JAPEX/JNOC/GSC et al.Mallik 5L-38 Gas Hydrate Production Research Well", Geological Survey of Canada, Bulletin 585, pp.10.
  17. Xin, Q., Yang, T., She, X., Gao, Y., and Cao, Y. (2022), "Experimental and Modeling Investigation of Thermal Conductivity of Shenyang Silty Clay under Unfrozen and Frozen States by Hot Disk Method", International Communications in Heat and Mass Transfer, Vol.132, pp.105882.
  18. Yoon, S., Cho, W., Lee, C., and Kim, G. Y. (2018), "Thermal Thermal Conductivity of Korean Compacted Bentonite Buffer Materials for a Nuclear Waste Repository", Energies, Vol.11, No.9, pp.2269.
  19. Yoon, S., Park, S., Kim, M. S., Kim, G. Y., and Lee, S. R. (2020), "Thermal Conductivity Evaluation of Compacted Bentonite Buffers Considering Temperature Variations", J. Nucl. Fuel Cycle Waste Technol., Vol.18, No.1, pp.43-49. https://doi.org/10.7733/jnfcwt.2020.18.1.43
  20. Yun, T. S. and Santamarina, J. C. (2008), "Fundamental Study of Thermal Conduction in Dry Soils", Granular matter, Vol.10, pp. 197-207. https://doi.org/10.1007/s10035-007-0051-5
  21. Zhang, M., Lu, J., Lai, Y., and Zhang, X. (2018), "Variation of the Thermal Conductivity of a Silty Clay during a Freezing-thawing Process", International Journal of Heat and Mass Transfer, Vol.124, pp.1059-1067. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.118
  22. Zhao, X., Zhou, G., and Jiang, X. (2019), "Measurement of Thermal Conductivity for Frozen Soil at Temperatures Close to 0℃", Measurement, Vol.140, pp.504-510. https://doi.org/10.1016/j.measurement.2019.03.069