• Title/Summary/Keyword: conductivity measurement

Search Result 627, Processing Time 0.028 seconds

Thermal Conductivity Measurement of Grouting Materials for Geothermal Heat Exchanger (그라우트 재료에 따른 지중 열교환기의 열전도도에 관한 실험적 연구)

  • Lim Hyo Jae;Kong Hyoung Jin;Song Yoon Seok;Park Seong Koo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.364-369
    • /
    • 2005
  • An experimental study was conducted on the thermal conductivity of various grouting materials for geothermal heat exchanger which is used as a heat sink or source in the heat pump system. The grouting of the vertical heat exchanger is important for environmental and heat transfer reasons and is generally accomplished by the placement of a low permeability material into the annular space between the borehole wall and the pipes suspended in the borehole. In this study, a lab scale test apparatus was made and measured the thermal conductivity of four grouting materials. As a result, the temperature rising tendency was similar among them, but the increasing rate was different. Thus the thermal conductivity showed a maximum difference of $27\%$ among grouting materials.

Effect of Temperature on Current Density of Nano Composite XLPE Material (나노복합체를 함유한 XLPE의 전류밀도에 미치는 온도의 영향)

  • Jung, Hyun-Jung;Yang, Yi-Seul;Nam, Jin-Ho;Nam, Gi-Joon;Kim, Dong-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.413-417
    • /
    • 2019
  • In this study, the volume resistivity of XLPE materials with various voltage ratings was discussed. The volume resistivity of the developed XPLE nanocomposite was measured, and the conductivity mechanism of the material was also examined. The ASTM D 257 and IEC 60093 measurement methods were used for these tests. The equipment was designed to measure up to a temperature of $200^{\circ}C$, and the electrode structure was designed to maintain the thickness and temperature uniformity of the sample. The conductivity of the sample decreased with temperature, and the samples reached saturation within 500s, after which the conductivity leveled off. By analyzing the current density and the electric field, we can well explain the electric conductivity behavior of our sample with the Schottky mechanism.

Ratio of Elemental Carbon Concentrations for Respective Measurement Locations according to the Sampler (샘플러에 따른 측정 위치별 원소탄소의 농도 비율)

  • Cha, Won-Seok;Kim, Eun-Young;Choi, Sung-Won;Choi, Soo-Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.461-472
    • /
    • 2021
  • Objectives: This study was conducted to determine the differences in EC concentrations according to the type of sampler by measuring and analyzing EC. Methods: Elemental carbon was measured in diesel engine vehicles and at the roadside. Using NIOSH method 5040, a cassette was coupled to 37 mm and 27 mm quartz filters and measurements were performed 21 times. There were 14 types of measurement methods, and polystyrene, polypropylene, and metal samplers were evenly placed inside the movable chamber. Results: The results measured using the 37 mm conductive cassette (closed/open) and the IOM sampler made of conductive materials showed a higher ratio than the other results. When the 37 mm conductive cassette was measured with the lid open, it showed a statistically significantly higher ratio than with other measurement methods (p<0.05). Conclusions: Checking the EC concentration a total of 21 times at each ratio based on the concentration of the 3-stage polystyrene cassette, it was statistically significantly higher when the 37 mm conductive cassette was open. This same cassette also showed a slightly higher EC concentration when closed. It was ascertained that some DEE was collected on the cassette wall surface due to the electrical conductivity of the polystyrene cassette, resulting in sample loss. Since EC is composed of fine particles, it is thought that electrical conductivity may affect its concentration.