• Title/Summary/Keyword: conductivity ink

Search Result 51, Processing Time 0.023 seconds

Environmental Life Cycle Assessments on Nano-silver Inks by Wet Chemical Reduction Process (습식환원법으로 제조한 은나노 잉크의 환경 전과정 평가)

  • Lee, Young-Sang;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.85-89
    • /
    • 2015
  • Utilized in a variety of electronic components, electronic components industry with metallic ink technology was established itself as a major technology research and development was gradually increasing, silver ink that is excellent in conductivity and stability, have long been used in the industry of electronic components in recent years and silver ink has been the size of nanoscale particles dispersed by developing display, an electronic tag, a flexible circuit board or the like used in the semiconductor and electronics as has been highlighted in, however industry modernization of equipment by increasing the production and consumption of products generated during the production process and environmental pollutants by use of waste products is expected to bring a serious environmental problem. In this study, prepared by a wet reduction method, the manufacturing process of the silver nano-ink to the entire process of the environmental impact assessment (LCA) was evaluated using the techniques. Life cycle assessment software GaBi 6 was used as received from the relevant agencies of the silver nano-ink data with reference to the manufacturing process, building inventory was international organization for standardization (ISO) 14040, 14044 compliant LCA conducted over four stages.

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae;Seungki Jo ;Kyung Tae Kim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.318-323
    • /
    • 2023
  • The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • Jeong, Seon-Ho;Lee, Byeong-Seok;Lee, Ji-Yun;Seo, Yeong-Hui;Kim, Ye-Na;More, Priyesh V.;Lee, Jae-Su;Jo, Ye-Jin;Choe, Yeong-Min;Ryu, Byeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

Inorganic Printable Materials for Thin-Film Transistors: Conductor and Semiconductor

  • Jeong, Sun-Ho;Song, Hae-Chon;Lee, Byung-Seok;Lee, Ji-Yoon;Choi, Young-Min;Ryu, Beyong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.18.2-18.2
    • /
    • 2010
  • For the past a few years, we have intensively researched the printable inorganic conductors and ZnO-based amorphous oxide semiconductors (AOSs) for thin-film transistors. For printable conductor materials, we have focused on the aqueous Ag and Cu ink which possess a variety of advantages, comparing with the conventional metal inks based on organic solvent system. The aqueous Ag ink was designed to achieve the long-term dispersion stability using a specific polymer which can act as a dispersant and capping agent, and the aqueous Cu ink was carefully formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. For printable ZnO-based AOSs, we have researched the noble way to resolve the critical problem, a high processing-temperature above $400^{\circ}C$, and recently discovered that Ga doping in ZnO-based AOSs promotes the formation of oxide lattice structures with oxygen vacancies at low annealing-temperatures, which is essential for acceptable thin-film transistor performance. The mobility dependence on annealing temperature and AOS composition was analyzed, and the chemical role of Ga are clarified, as are requirements for solution-processed, low-temperature annealed AOSs.

  • PDF

A Study on The Effect of Dampening Conductivity in the Offset Printing Printability (오프셋인쇄 축임물의 전도도가 인쇄적성에 미치는 영향에 관한 연구)

  • Park, Chan-Woo;Lee, Jae-Soo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • Offset printing is one of the well known printing technique of lithographic process and consists of image area and 'non-image area on a flat image carrier. The surface tension of dampening water can be controlled by adding IPA after mixing of raw water and etching solution. The etching solution contains a surfactant for reducing surface energy, a clean agent for non-imaging area, wetting agent for protecting non-imaging area from oil components like ink and also an emulsifying agent for controlling emulsification. In this study, the present situation of dampening water maintenance has examined by collecting dampening water using at domestic companies. The pH related to dampening water, conductivity, contact angle, emulsification curve are measured to define the current situation of dampening water control of each companies and to analyze the relationship among measured properties. In the study most of companies among 16 printing companies tested controlling dampening water through pH value. However, the quality of printing has varied depending upon conductivity, contact angle, IPA content, and emulsification value. The control of dampening water should be carry at the state of the standard when adding proper ratio of etching solution. It would be more effective when pH or conductivity control carries out in parallel with controlling dampening water. Therefore the concept that pH5.5 is correct is based concept. Based on these initial tests it is defined that the standardization of dampening water control is required.

  • PDF

Numerical Analysis of Heat Transfer and Fabrication of Carbon Material for Heat Dissipation in Solar Panel (태양광 패널 적용 방열용 탄소소재의 제조 및 열전달 수치해석)

  • Park, Hun-Su;Kang, Chul-Hee;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.82-90
    • /
    • 2019
  • This analysis demonstrates the effective removal of heat generated from a solar panel's output degradation factor solar cells (the solar panel's output deterioration factor), and solves the problems of oxidation and corrosion in existing metal heat sinks. The heat-dissipating test specimen was prepared using carbon materials; then, its thermal conductivity and its effectiveness in reducing temperatures were studied using heat transfer numerical analysis. As a result, the test specimen of the 30g/㎡ basis weight containing 80% of carbon fiber impregnated with carbon ink showed the highest thermal conductivity 6.96 W/(m K). This is because the surface that directly contacted the solar panel had almost no pores, and the conduction of heat to the panels appeared to be active. In addition, a large surface area was exposed to the atmosphere, which is considered advantageous in heat dissipation. Finally, numerical analysis confirmed the temperature reduction effectiveness of 2.18℃ in a solar panel and 1.08℃ in a solar cell, depending on the application of heat dissipating materials.

For High Aspect Ratio of Conductive Line by Using Alignment System in Micro Patterning of Inkjet Industry (화상정렬 시스템을 이용한 잉크젯 반복인쇄기술)

  • Park, Jae-Chan;Park, Sung-Jun;Seo, Shang-Hoon;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.154-154
    • /
    • 2006
  • Samsung Electro Mechanics ink jet has developed ultra high resolution alignment system. The alignment system has been developed for repeatable printing of conductive ink. The resolution of alignment system is 0.5um and the velocity of printing working plate is 1.5m/s. So far repeated printing results included sintering process have over 30um of drop mislocation data. In order to improve line thickness and conductivity of metal line, we need to develop the higher mechanical accurate align system. On the demand, this developed align system has under $1{\sim}2{\mu}m$ mispositioning performance and can measure of mechanical accuracy of inkjet printer, as well as the straightness of jetted drop from inkjet head. There is no kinds limit of substrate and ink to use SEM alignment system. By using this alignment system, we progress two experiment of reiterate printing drop and making conductive line on the glass and photo paper. Optical microscope and 3D profiler has been used for measurement of printed ink.

  • PDF

Improving Conductivity of Metal Grids by Controlling Sintering Process (배선 함몰 전극의 배선 소결공정 최적화에 따른 전기적 특성 향상)

  • Ahn, Wonmin;Jung, Sunghoon;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.158-162
    • /
    • 2015
  • To substitute indium tin oxide (ITO), many substituents have been studied such as metal nanowires, carbon based materials, 2D materials, and conducting polymers. These materials are not good enough to apply to an electrode because theses exhibit relatively high resistance. So metal grids are required as an additionalelectrode to improve the conductivities of substituents. The metal grids were printed by electrohydrodynamic printing system using Ag nanoparticle based ink. The Ag grids showed high uniformity and the line width was about $10{\mu}m$. The Ag nanoparticles are surrounded by dispersants such as unimolecular and polymer to prevent aggregation between Ag nanoparticles. The dispersants lead to low conductivity of Ag grids. Thus, the sintering process of Ag nanoparticles is strongly recommended to remove dispersants and connect each nanoparticles. For sintering process, the interface and microstructure of the Ag grid were controlled in 1.0 torr Ar atmosphere at aound $400^{\circ}C$ of temperature. From the sintering process, the uniformity of the Ag grid was improved and the defects on the Ag grids were reduced. As a result, the resistivity of Ag grid was greatly reduced up to $5.03({\pm}0.10){\times}10^{-6}{\Omega}{\cdot}cm$. The metal grids embedded substrates containing low pressure Ar sintered Ag grids showed 90.4% of transmittance in visible range with $0.43{\Omega}/{\square}$ of sheet resistance.

Effect of Micro Surface Structure on Printed Electronics (미세표면구조가 전자인쇄에 미치는 영향)

  • Kim, Seung-Hwan;Kang, Hyun-Wook;Lee, Kyung-Heon;Sung, Hyung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.20-25
    • /
    • 2010
  • The effect of micro surface structure on printing for printed electronics has been studied experimentally. The photolithography MEMS fabricationwass used to make a SU-8 molder which has micro structures on the surface, and the PDMS micro structure was fabricated by the PDMS molding method. In the aspect of printed electronics, we used silver paste conductive ink. We measured the surface energy variation on pillar microstructure. The microstructure was used to real printing experiment by a screen printing. We printed 1cm micro lines which have $30{\sim}250{\mu}m$ width, and checked the conductivity to sort out opened line pattern. Printability was defined by success probability of printed patterns and we found that the present microstructures improve the printability significantly.

Functional Inks for Printed Electronics

  • Choi, Young-Min;Jeong, Sun-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.63.1-63.1
    • /
    • 2012
  • In recent years, the functional inks for printed electronics that can be combined with a variety of printing techniques have attracted increasingly significant interest for use in low cost, large area, high performance integrated electronics and microelectronics. In particular, the development of solution-processable conductor, semiconductor and insulator materials is of great importance as such materials have decisive impacts on the electrical performance of various electronic devices, and, therefore, need to meet various requirements including solution processability, high electrical performance, and environmental stability. Semiconductor inks such as IGO, CIGS are synthesized by chemical solution method and microwave reaction method for TFT and solar cell application. Fine circuit pattern with high conductivity, which is valuable for flexible electrode for PCB and TSP devices, can be printed with highly concentrated and stabilized conductor inks such as silver and copper. Solution processed insulator such as polyimide derivatives can be use to all printed TFT device. Our research results of functional inks for printed electronics provide a recent trends and issues on this area.

  • PDF