• Title/Summary/Keyword: conductivity/resistivity

Search Result 390, Processing Time 0.027 seconds

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Phase Transformation and Thermoelectric Properties of Fe0.92Mn0.08Si2 Prepared by Mechanical Alloying (기계적 합금화로 제조된 Fe0.92Mn0.08Si2의 상변화 및 열전 특성)

  • Kim, Young-Seob;Cho, Kyung-Won;Kim, Il-Ho;Ur, Soon-Chul;Lee, Young-Geun
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.292-296
    • /
    • 2003
  • In an attempt to enhance phase transformation and homogenization of Mn-doped $FeSi_2$, mechanical alloying of elemental powders was applied. Cold pressing and sintering in vacuum were carried out to produce a dense microstructure, and then isothermal annealing was employed to induce a phase transformation to the $\beta$-$FeSi_2$semiconductor. Phase transitions in this alloy system during the process were investigated by using XRD, EDS and SEM. As-milled powders after 100 h of milling were shown to be metastable state. As-sintered iron silicides consisted of untransformed mixture of $\alpha$-$Fe_2$$Si_{5}$and $\varepsilon$-FeSi phases. $\beta$-$FeSi_2$phase transformation was induced by subsequent isothermal annealing at $830^{\circ}C$, and near single phase of $\beta$-$FeSi_2$was obtained after 24 h of annealing. Thermoelectric properties in terms of Seebeck coefficient, and electrical conductivity were evaluated and correlated with phase transformation. Seebeck coefficient electrical resistivity and hardness increased with increasing annealing time due to $\beta$ phase transformation.

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae;Kim, Juhwan;Lee, Kangil;Oh, Suhk Kun;Kang, Hee Jae;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.72-76
    • /
    • 2015
  • Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices (유연전자소자를 위한 차세대 유연 투명전극의 개발 동향)

  • Kim, Joo-Hyun;Chon, Min-Woo;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.

Growth of zinc oxide thin films by oxygen plasma-assisted pulsed laser deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.208-208
    • /
    • 2010
  • Zinc oxide (ZnO) is a functional material with interesting optical and electrical properties, a wide band gap (more than 3.3 eV), a high transmittance in the visible light region, piezoelectric properties, and a high n-type conductivity. This material has been investigated for use in many applications, such as transparent electrodes, blue light-emitting diodes, and ultra-violet detector. ZnO films grown under low oxygen pressure by thin film deposition methods show low resistivity and large free electron concentration. Therefore, reducing the background carrier concentration in ZnO films is one of the major challenges ahead of realizing high-performance ZnO-based optoelectronic devices. In this study, we deposited ZnO thin films on sapphire substrates by pulsed laser deposition (PLD) with employing an oxygen plasma source to decrease the background free-electron concentration and enhance the crystalline quality. Then, the substrate temperature was varied between 200 'C to 900 'C The vacuum chamber was initially evacuated to a pressure of $10^{-6}$ Torr, and then a pure $O_2$ gas was introduced into the chamber and the pressure during deposition was maintained at $10^{-2}$ Torr. Crystallinity and orientation of ZnO films were investigated by X-ray diffraction (XRD). The film surface was analyzed with atomic force microscope (AFM). And electrical properties were measured at room temperature by Hall measurement.

  • PDF

Thermoelectric Properties of the Hot-Pressed n-Type PbTe with the Powder Processing Method (분말 제조공정에 따른 n형 PbTe 가압소결체의 열전특성)

  • Choi, Jae-Shik;Oh, Tae-Sung;Hyun, Dow-Bin
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.245-251
    • /
    • 1998
  • Bi-doped n-type PbTe thermoeletric materials were fabricated by mechanical alloying and hot pressing. The intering characteristics and thermoelectric properties of the hot- pressed PbTe were characterized and compared with the properties of the specimens prepared by meltingigrinding method. The hot-pressed PbTe specimens fabricated by mechanical alloying exhibited more negative Seebeck coefficient, higher electrical resistivity and lower thermal conductivity. compared to ones prepared by meltingigrinding. The maximum figure-of-merit increased and the temperature for the maximum figure-of-merit shifted to lower temperature for the specimens fabricated by mechanical alloying. When hot pressed at $650^{\circ}C$, 0.3 wt% Bi-doped PbTe fabricated by mechanical alloying and meltingjgrinding exhibited maximum figure-of-merits of $1.33\times10^{-3}/K$ at $200^{\circ}C$ and $1.07\times10^{-3}/K$ at $400^{\circ}C$ respectively.

  • PDF

The Corrosion Study of Al Current Collector in Phosphonium Ionic Liquid as Solvent for Lithium Ion Battery

  • Cha, Eun-Hee;Mun, Jun-Young;Cho, E.-Rang;Yim, Tae-Eun;Kim, Young-Gyu;Oh, Seung-M.;Lim, Soo-A;Lim, Jea-Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.152-156
    • /
    • 2011
  • A room temperature ionic liquid (RTIL) based on trihexyl (tetradecyl)phosphonium bis(trifluoromethanesulfonyl) imide ([$(C_6H_{13})_3P(C_{14}H_{29)}$] [TFSI];P66614TFSI) was synthesized and analyzed to determine their characteristics and properties. The bis(trifluoromethanesulfonyl)imide (TFSI) anion is widely studied as an ionic liquid (IL) forming anion which imparts many useful properties, notably electrochemical stability. Especially its electrochemical and physical characteristics for solvent of lithium ion battery were investigated in detail. $P_{66614}$ TFSI exhibits fairly low conductivity (0.89 mS $cm^{-1}$) and higher viscosity (298 K: 277 cP; 343 K: 39 cP) than other ionic liquids, but it exhibits a high thermal stability (over $400^{\circ}C$). Especially corrosion behavior on Al current collector was tested at room temperature and further it was confirmed that thermal resistivity for Al corrosion was highly increased in 1.0M LiTFSI/$P_{66614}$-TFSI electrolyte comparing with other RTILs by linear sweep thermometry.

Effect of weak interlayer coupling on critical fluctuation in high $T_c$ superconductors

  • Kim, Jin-Tae;Kang, W.N.;Chung, S.H.;Ha, D.H.;Yoo, K.H.;Kim, M.S.;Lee, Sung-Ik;Park, Y.K.;Park, J.C.
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • The magnetization and/or resistivity of high $T_c$ superconductors ($YBa_2Cu_3O_{7-\delta}$(YBCO) single crystal, $Bi_2Sr_2CaCu_2O_8$ (Bi-2212) single crystal, $Tl_2Ba_2CaCu_2O_8$ (Tl-2212) film, $HgBa_2Ca_2Cu_3O_8$ (Hg-1223) film) have been measured as a function of magnetic field H and temperature T. The extracted fluctuation part of the magnetization and conductivity exhibits a critical behavior consistent with the three-dimensional XY model. The dynamic critical exponent z does not sensitively vary with a type of the superconductors. The value of z ranges from 1.5 to $1.8{\pm}0.1$. However, the static critical exponent ${\nu}$ is the most largely increased in Tl-2212 that has a weaker interlayer coupling strength than YBCO; the value of ${\nu}$ is 0.669, 0.909, 1.19, and 1.338 for YBCO, Bi-2212, Hg-1223, and Tl-2212 respectively. The results indicate that the weak interlayer coupling along the c-axis of high $T_c$ superconductors near $T_c$ does not influence the dynamic critical exponent z (the same value of superfluid $^4He$), but significantly increases the static critical exponent ${\nu}$.

  • PDF

Investigation of Transparent Conductive Oxide Films Deposited by Co-sputtering of ITO and AZO (ITO와 AZO 동시 증착법으로 제조된 투명전도막의 특성 연구)

  • Kim, Dong-Ho;Kim, Hye-Ri;Lee, Sung-Hun;Byon, Eung-Sun;Lee, Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.128-132
    • /
    • 2009
  • Transparent conducting thin films of indium tin oxide(ITO) co-sputtered with aluminum-doped zinc oxide(AZO) were deposited on glass substrate by dual magnetron sputtering. It was found that the electrical properties and structural characteristics of the films are significantly changed according to the sputtering power of the AZO target. The IAZTO film prepared with D.C power of ITO at 100 W and R.F power of AZO at 50 W shows an electrical resistivity of $4.6{\times}10^{-4}{\Omega}{\cdot}cm$ and a sheet resistance of $30{\Omega}/{\square}$ (for 150 nm thick). Besides of the improvement of the electrical properties, compared to the ITO films deposited at the same process conditions, the IAZTO films have very smooth surface, which is due to the amorphous nature of the films. However, the electrical conductivity of the IAZTO films was found to be deteriorated along with the crystallization in case of the high temperature deposition (above $310^{\circ}C$). In this work, high quality amorphous transparent conductive oxide layers could be obtained by mixing AZO with ITO, indicating possible use of IAZTO films as the transparent electrodes in OLED and flexible display devices.