• Title/Summary/Keyword: conductive Ag paste

Search Result 38, Processing Time 0.021 seconds

Influence of Flip Chip Bonding Conditions Using Anisotropic Conductive Adhesive(ACA) in the Fabrication of RFID Tag (RFID tag의 제작 공정에서 비등방 전도성 접착제를 사용한 flip chip bonding 조건의 영향)

  • Lee, Jun-Sik;Kim, Jeong-Han;Kim, Mok-Sun;Lee, Jong-Hyeon
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.223-226
    • /
    • 2007
  • 본 연구에서는 Ag anisotropic conductive adhesive(ACA)의 종류, 경화 조건 및 안테나 패턴의 재질에 따른 flip chip bonding된 RFID die의 접합부 신뢰성이 조사되었다. 접합강도 측정에 의하여 접합강도가 최적화되는 공정 시간을 결정할 수 있었으며, 그러한 최적의 공정조건에서는 paste-type Ag ink로 인쇄된 안테나 상에서의 RFID die의 접합강도가 Cu 재질 안테나에 비해 상대적으로 높게 측정됨을 알 수 있었다. RFID tag의 인식거리 측정 시험을 통하여 적절한 경화 조건이 적용된다면 안테나의 재질이 인식거리 변화에 가장 주요한 영향을 미치는 인자임을 알 수 있었다. 아울러 Cu 안테나 패턴은 RFID die의 접합 과정에서 곡률을 가지며 휘어지면서 인식거리와 관련된 long-tem reliability를 악화시킬 수 있음을 관찰할 수 있었다.

  • PDF

Stress-Strain Behavior and Electrical Resistive of Conductive Silver Particle/Silicone Composite Pastes with Surface Modification (표면처리에 따른 도전성 은입자/실리콘 복합 페이스트의 응력-변형율 거동 및 전기비저항 특성)

  • 이건웅;방대석;박민;조동환
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.61-67
    • /
    • 2004
  • This paper reports the electrical conductivity and the stress-strain behavior of silver particle-filled silicone composite pastes for electromagnetic interference (EMI) shielding gasket materials. The percolation threshold (critical concentration) of the composite paste obtained by incorporating irregular sphere-shaped silver particles and room temperature vulcanizing (RTV) silicone resin was determined from the electrical conductivity result. At about 28 vol% Beading of untreated silver particles, the percolation phenomenon occurred and at this critical concentration, the volumetric resistivity, the tensile strength, and the elongation of the pastes were investigated. This work also suggests that the stress-strain characteristics of a composite paste filled with metal particles above the percolation threshold may be effectively improved by properly selecting a coupling agent.

Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg (SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Kang, Min Gu;Cho, Hyeon Soo;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.

Preparation of Lead-free Silver Paste with Nanoparticles for Electrode (나노입자를 첨가한 전극용 무연 silver 페이스트의 제조)

  • Park, Sung Hyun;Park, Keun Ju;Jang, Woo Yang;Lee, Jong Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.4
    • /
    • pp.219-224
    • /
    • 2006
  • Silver paste with low sintered temperature has been developed in order to apply electronic parts, such as bus electrode, address electrode in PDP (Plasma Display Panel) with large screen area. In this study, nano-sized silver particles with 10-30 nm were synthesized from silver nitrate ($AgNO_3$) solution by chemical reduction method and silver paste with low sintered temperature was prepared by mixing silver nanoparticles, conventional silver powder with the particle size 1.6 um and Pb-free frit. Conductive thick film from silver paste was fabricated by screen printing on alumina substrate. After firing at $540^{\circ}C$, the cross section and surface morphology of the thick films were analyzed by FE-SEM. Also, the sheet resistivity of the fired thick films was measured using the four-point technique.

Properties of Ag Thick Films Fabricated by Using Low Temperature Curable Ag Pastes (저온 경화형 Ag 페이스트 및 이를 이용한 Ag 후막의 제조 및 특성)

  • Park, Joon-Shik;Hwang, Joon-Ho;Kim, Jin-Gu;Kim, Yong-Han;Park, Hyo-Derk;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.18-23
    • /
    • 2003
  • Properties of Ag thick films fabricated by using low temperature curable silver pastes were investigated. Ag pastes were consisted of polymer resins and silver powders. Ag pastes were used for conductive or fixing materials between board and various electrical and electronic devices. Low temperature curable Ag pastes have some advantages over high temperature curable types. In cases of chip mounting, soldering properties were required for screen printed Ag thick films. In this study, four types of Ag pastes were fabricated with different compositions. Screen printed Ag thick films on alumina substrates were fabricated at various curing temperatures and times. Thickness, resistivity, adhesive strength and solderability of fabricated Ag thick films were characterized. Finally, Ag thick films produced using Ag pastes, sample A and B, cured at $150^{\circ}C$ for longer than 6 h and $180^{\circ}C$ for longer than 2 h, and $150^{\circ}C$ for longer than 1 h and $180^{\circ}C$ for 1 h, respectively, showed low resistivities of $10^{-4}$ $∼10^{-5}$ Ωcm and good adhesive strength of 1∼5 Mpa. Soldering properties of those Ag thick films with curing temperatures at solder of 62Sn/36Pb/3Ag were also investigated.

Fabrication of Transparent Conductive Film for Flexible Devices Using High-Resolution Roll Imprinting (고 정밀 롤 임프린팅을 이용한 유연 전자소자용 투명전극 제작)

  • Yu, Jong-Su;Yu, Semin;Kwak, Sun-Woo;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.975-979
    • /
    • 2014
  • Transparent conductive films (TCF) with excellent electrical properties and high mechanical flexibility have been widely studied because of their potential for application in optoelectronic devices such as light-emitting diodes, paper displays and organic solar cells. In this paper, we report on low-resistance and high-transparent TCF for flexible device applications. To fabricate a high-resolution roll imprinted TCF, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of high-resolution roll imprinted on flexible film, the manufacture of Ag-nano paste which was filled into patterned film using a doctor blade process. Also, we was demonstrated with the successful application(ITO free organic photovoltaic) of the developed flexible TCF.

Influence of the Amount of Conductive Paste on the Electrical Characteristics of c-Si Photovoltaic Module (전도성 페이스트 도포량 변화에 따른 결정질 태양광 모듈의 전기적 특성에 대한 영향성 분석)

  • Kim, Yong Sung;Lim, Jong Rok;Shin, Woo Gyun;Ko, Suk-Whan;Ju, Young-Chul;Hwang, Hye Mi;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.720-726
    • /
    • 2019
  • Recently, research on cost reduction and efficiency improvement of crystalline silicon(c-Si) photovoltaic(PV) module has been conducted. In order to reduce costs, the thickness of solar cell wafers is becoming thinner. If the thickness of the wafer is reduced, cracking of wafer may occur in high temperature processes during the c-Si PV module manufacturing process. To solve this problem, a low temperature process has been proposed. Conductive paste(CP) is used for low temperature processing; it contains Sn57.6Bi0.4Ag component and can be electrically combined with solar cells and ribbons at a melting point of $150^{\circ}C$. Use of CP in the PV module manufacturing process can minimize cracks of solar cells. When CP is applied to solar cells, the output varies with the amount of CP, and so the optimum amount of CP must be found. In this paper, in order to find the optimal CP application amount, we manufactured several c-Si PV modules with different CP amounts. The amount control of CP is fixed at air pressure (500 kPa) and nozzle diameter 22G(outer diameter 0.72Ø, inner 0.42Ø) of dispenser; only speed is controlled. The c-Si PV module output is measured to analyze the difference according to the amount of CP and analyzed by optical microscope and Alpha-step. As the result, the optimum amount of CP is 0.452 ~ 0.544 g on solar cells.

Preparation of Silver Nanoparticles by Chemical Reduction-Protection Method Using 1-Decanoic Acid and Tri-n-octylphosphine, and their Application in Electrically Conductive Silver Nanopaste (1-Decanoic Acid와 Tri-n-octylphosphine을 이용하여 화학적 환원법으로 제조된 은 나노입자의 특성 및 전기적 전도체 적용)

  • Sim, Sang-Bo;Bae, Dong-Sik;Han, Jong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.68-73
    • /
    • 2016
  • Silver nanoparticles were prepared by chemical reduction-protection method using 1-decanoic acid and tri-n-octylphosphine as surfactants, and using $NaBH_4$ as a reducing agent. The silver nanoparticles were also studied for their formation, structure, morphology and size using UV-Visible spectroscopy, XRD, TEM and SEM. Further the viscosity of the silver paste and the surface resistance of the silver metal film produced by screen coating onto a PET film were investigated. Well dispersed and quasispherical silver nanoparticles with the size of 10-200 nm were obtained under the optimal molar ratio of $NaBH_4/AgNO_3=1:5$. The surface resistance of silver metal film coated on the PET film made with the silver nanoparticles under the optimal molar ratio showed a minal value of $41{\mu}{\Omega}/cm^2$.