• Title/Summary/Keyword: conducting property

Search Result 213, Processing Time 0.027 seconds

A Study on the Research History of Stone Pagoda after Japanese Colonial (일제강점기 이후 석탑(石塔) 조사연구사)

  • Ji, Sung-Jin;Seo, Chi-Sang
    • Journal of architectural history
    • /
    • v.20 no.1
    • /
    • pp.61-75
    • /
    • 2011
  • This study aims to investigate the changing aspects about research methodology of stone pagoda from the period of Japanese colonial to now. There were the differences in purpose, method and analysis of the research according to each period. In Japanese colonial period, the purpose of research was to make lists of almost stone pagodas in Korea. Following this, Japanese researchers conducted detailed research for academic purpose. They took measurements of stone pagodas and made drawings. After liberation the research was focused on the relics contained in pagodas. They proceeded to investigate the inner relics in order to attract the attention of the people. In the late 1900's, the repair works of cultural heritages were increased. Many reports of the repair works were released and sent to administration offices. The reports contained the change aspects of situation between before work and after with drawings or simple investigation documents. In the 1990's, the restoration works for important stone pagodas were started by the National Research Institute of Cultural Heritage. Since then, researches from various way - architectural and conservational researches about historical interpretation, shape, structure, proportion, technique, etc. - progressed for careful restoration and accurate study. In Recent years, various professional organizations(in the field of structure, physics, chemistry, biology, lithology, etc.) started to join the researches. Researches conducted studies directly with the stone pagodas, as well as conducting indirect studies with the stone pagodas, such as the structural stability of stone pagodas, the characteristics of rock, and conservation chemicals. Today the research project 'The preservation project of stone cultural property' is being conducted by the National Research Institute of Cultural Heritage. The purpose of this project is to gain more detailed and accurate investigation documents to be provided for the people. In conclusion, researches from various fields must be included in the research. Furthermore, a synthetic study should be done through comparing similar characteristics or different characteristics among many research results.

A Study on the Pungsu Landscape of the Myungdang Tomb Sites in Andong Area (안동의 풍수경관 연구 - 음택 명당을 중심으로 -)

  • 옥한석
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.1
    • /
    • pp.70-86
    • /
    • 2003
  • This study aimes to describe the forms and characteristics of Myungdang tomb sites in Andongs Area by conducting field trips and analyzing on topographic maps. Most Myundang sites are concentrated around hills, mountains, and tributaries that collectively are located in a northern parts of Nakdong river. The river and the mountain, which the principle of Pungsu, so called Jangpung and Duksu, is applied to, constitute the various forms. They provide the sites with physical settings for Myungdang that can be said to commonly retain such properties as semi-openness, multi-surroundedness, stability, harmony, balance. It can be further argued that those properties of Myungdang sites offer criteria for human settlement and sustainable land development in the current world.

Effect of Niobium on the Electronic Properties of Passive Films on Zirconium Alloys

  • Kim, Bo Young;Kwon, Hyuk Sang
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2003
  • The effects of Niobium on the structure and properties(especially electric properties) of passive film of Zirconium alloys in pH 8.5 buffer solution are examined by the photo-electrochemical analysis. For Zr-xNb alloys (x = 0, 0.45, 1.5, 2.5 wt%), photocurrent began to increase at the incident energy of 3.5 ~ 3.7 eV and exhibited the $1^{st}$ peak at 4.3 eV and the $2^{nd}$ peak at 5.7 eV. From $(i_{ph}hv)^{1/2}$ vs. hv plot, indirect band gap energies $E_g{^1}$= 3.01~3.47 eV, $E_g{^2}$= 4.44~4.91 eV were obtained. With increasing Nb content, the relative photocurrent intensity of $1^{st}$ peak significantly increased. Compared with photocurrent spectrum of thermal oxide of Zr-2.5Nb, It was revealed that $1^{st}$ peak in photocurrent spectrum for the passive film formed on Zr-Nb alloy was generated by two types of electron transitions; the one caused by hydrous $ZrO_2$ and the other created by Nb. Two electron transition sources were overlapped over the same range of incident photon energy. In the photocurrent spectrum for passive film formed on Zr-2.5Nb alloy in which Nb is dissolved into matrix by quenching, the relative photocurrent intensity of $1^{st}$ peak increased, which implies that dissolved Nb act as another electron transition source.

Active Materials for Energy Conversion and Storage Applications of ALD

  • Sin, Hyeon-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.75.2-75.2
    • /
    • 2013
  • Atomic layer deposition (ALD), utilizing self-limiting surface reactions, could offer promising perspectives for future efficient energy conversion devices. The capabilities of ALD for surface/interface modification and construction of novel architectures with sub-nanometer precision and exceptional conformality over high aspect ratio make it more valuable than any other deposition methods in nanoscale science and technology. In the context, a variety of researches on fabrication of active materials for energy conversion applications by ALD are emerging. Among those materials, one-dimensional nanotubular titanium dioxide, providing not only high specific surface area but also efficient carrier transport pathway, is a class of the most intensively explored materials for energy conversion systems, such as photovoltaic cells and photo/electrochemical devices. The monodisperse, stoichiometric, anatase, TiO2 nanotubes with smooth surface morphology and controlled wall thickness were fabricated via low-temperature template-directed ALD followed by subsequent annealing. The ALD-grown, anatase, TiO2 nanotubes in alumina template show unusual crystal growth behavior which allows to form remarkably large grains along axial direction over certain wall thickness. We also fabricated dye-sensitized solar cells (DSCs) introducing our anatase TiO2 nanotubes as photoanodes, and studied the effect of blocking layer, TiO2 thin films formed by ALD, on overall device efficiency. The photon convertsion efficiency ~7% were measured for our TiO2 nanotubebased DSCs with blocking layers, which is ~1% higher than ones without blocking layer. We also performed open circuit voltage decay measurement to estimate recombination rate in our cells, which is 3 times longer than conventional nanoparticulate photoanodes. The high efficiency of our ALD-grown, anatase, TiO2 nanotube-based DSCs may be attributed to both enhanced charge transport property of our TiO2 nanotubes photoanode and the suppression of recombination at the interface between transparent conducting electrode and iodine electrolytes by blocking layer.

  • PDF

Effects of Entertainment and Economical Efficiency on the Mobile Advertising Value and Intention (모바일 광고가치와 접속의도에 유희성과 경제성 변수가 미치는 영향 분석)

  • Lee, Bong-Gyou;Kim, Ki-Youn;Lee, Hye-Sun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.43-54
    • /
    • 2009
  • The purpose of this study is to explore variables that affect users' perceived value of mobile advertising and actual response intention and to analyze causal relationships among variables. In order to verify the relational significance, we built new research model and hypotheses based on the Ducoffe's model(1996). And we found out four independent variables such as entertainment, information usefulness, convenience, economical efficiency, and advertising impact's value as a mediating variable. Especially, we classified into four multi-age groups to investigate properly moderating effects through SEM(path analysis) and difference test. Therefore, it is academical and practical worth that we developed our model to appropriate on mobile advertising's unique property and that we verified our hypotheses and variables focused on age group, whereas previous research did not. For this, we surveyed 345 samples for conducting structural equation modeling in empirical approach. The results of this study supported the statistical significance of all hypotheses except but convenience.

A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting

  • Jung, Hyung-Jo;Kim, In-Ho;Koo, Jeong-Hoi
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.379-392
    • /
    • 2011
  • This paper presents a multi-functional system, consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device, and its applications in stay cables. The proposed system is capable of offering multiple functions: (1) mitigating excessive vibrations of cables, (2) estimating cable tension, and (3) harvesting energy for wireless sensors used health monitoring of cable-stayed bridges. In the proposed system, the EMI device, consisting of permanent magnets and a solenoid coil, can converts vibration energy into electrical energy (i.e., induced emf); hence, it acts as an energy harvesting system. Moreover, the cable tension can be estimated by using the emf signals obtained from the EMI device. In addition, the MR damper, whose damping property is controlled by the harvested energy from the EMI device, can effectively reduce excessive cable vibrations. In this study, the multi-functionality of the proposed system is experimentally evaluated by conducting a shaking table test as well as a full-scale stay cable in a laboratory setting. In the shaking table experiment, the energy harvesting capability of the EMI device for wireless sensor nodes is investigated. The performance on the cable tension estimation and the vibration mitigation are evaluated using the full-scale cable test setup. The test results show that the proposed system can sufficiently generate and store the electricity for operating a wireless sensor node twice per day, significantly alleviate vibration of a stay cable (by providing about 20% larger damping compared to the passive optimal case), and estimate the cable tension accurately within a 2.5% error.

A Study of Communication Factor in Lunyu (『논어(論語)』의 커뮤니케이션 속성고(屬性考))

  • Lee, Bum-Soo
    • (The)Study of the Eastern Classic
    • /
    • no.36
    • /
    • pp.85-104
    • /
    • 2009
  • This study examines a study of communication factor in Lunyu, as a communication text, in terms of communicator, audience, message, communication factor, communication text, interdisciplinary research. In many respects, it is generally accepted that Lunyu have been the generic references of the Oriental culture. Lunyu consider ethics, logic, and practicability as the qualifying requirement of communicator, asserting that communicator should speak true language, like a "chuntzu"(君子) does, and should also put their language into practice. The audience's attitude and method as contained in Lunyu are that hearers should have sharp ears for language, hear selectively the right language, and use the language suitable to the situation. It is also emphasized that the Hearer should actively lead in the situation of transactional communications. In Lunyu, one property of message is that language, which determines the rise and fall of a nation and is also the basis of judgement for other people, should comply with ethics and reasons and sould also be put into practice. In other words, credible message, as the practice of language, is the practical requirement of ethics and the qualification of a "chuntzu"(君子, superior man) in ruling the nation or conducting one's life.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites (팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가)

  • Oh, Kyung-Seok;Heo, Seong-Il;Yun, Jin-Chul;Han, Kyung-Seop
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.