• 제목/요약/키워드: conditioning simulation

검색결과 999건 처리시간 0.023초

미활용 에너지원으로서의 지하철 배열이용에 관한 연구 (Research on using the exhausted heat from subway tunnel as unused energy)

  • 김종렬;금종수;최광환;윤정인;박준택;김동규;김보철;정용현
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.695-701
    • /
    • 1998
  • Researches on unused energy are being continued because of the limited fossil fuel and the destruction of environment. Therefore this study was peformed as follows. The collectable amount of exhausted heat for an air-conditioning was calculated by the subway thermal environment prediction program. And the electric power needed by conventional heat source equipments was compared with one by unused heat source equipments when the exhausted heat was used by heat pump in heating and hot water supplying. The results are summarized as follows; 1) Forced ventilation should be conducted to keep optimal temperature in subway tunnel in summer as well as in winter. According to the simulation, temperature in tunnel was higher than that on the ground in summer when the forced ventilation was conducted only in winter. 2) Ventilating time should be calculated out to the optimal condition for not only saving power of ventilation fan but reusing exhausted heat. By the simulation, it is certain that the exhausted heat should be eliminated in air-conditioning time. 3) The use of exhausted heat source heat pump could save 8% of electric power per hour in comparison with existing heat pump. It was based on a present heat generation and traffic for ventilating time of general air-conditioning, but could be different by ventilating time. 4) As the traffic increases up to 1.5 or 2 times, electric power consumption of the conventional heat pump increases to 11% or 13.5% per mean hour in comparison with that of the exhausted heat source heat pump, though all-day ventilation.

  • PDF

Simulation of $H_2O/LiBr$ Triple Effect Absorption Systems with a Modified Reverse Flow

  • Jo, Young-Kyong;Kim, Jin-Kyeong;Kang, Yang-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권3호
    • /
    • pp.114-121
    • /
    • 2007
  • In this study, a modified reverse flow type, one of the triple effect absorption cycles, is studied for performance improvement. The cycle simulation is carried out by using EES(Engineering Equation Solver) program for the working fluid of $H_2O/LiBr$ solution. The split-ratios of solution flow rate, UA of each component, pumping mass flow rate of solution are considered as key parameters. The results show that the optimal SRH (split ratio of high side) and SRL (split ratio of low side) values are 0.596 and 0.521, respectively. Under these conditions, the COP is maximized to 2.1. The optimal pumping mass flow rate is selected as 3 kg/s and the corresponding UAEV A is 121 kW/K in the present system. The present simulation results are compared to the other literature results from Kaita's (2002) and Cho's (1998) triple effect absorption systems. The present system has a lower solution temperature and a higher COP than the Kaita's modified reverse flow, and it also gives a higher COP than the Cho's parallel flow by adjusting split ratios.

아트리움 공간의 수직공기온도분포 계산을 위한 수학모형의 작성 (Mathematical Modeling for Calculating the Vertical Air Temperature Distribution in an Atrium Space)

  • 박종수;안병욱
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.533-542
    • /
    • 2003
  • This study aims to propose a simplified mathematical model for calculating vertical air temperature distribution in a four-sided atrium. In the first stage of the mathematical modeling, the computer model combined zonal model and solar radiation model using Monte Carlo method and Ray tracing technique went through a computer simulation with architectural variables applied to a four-sided atrium in summer. In the next stage, Curve Expert, a computer program that gets the most suitable solution ac-cording to the least squares method, is used to analyze the results of the computer simulation and to derive the mathematical model. The accuracy of the mathematical model was evaluated through a comparison of calculation results from a mathematical model and computer simulation. In this validation step using the least square method, the R2 value of the Zones 1, 2 and 3 showed higher than 0.945. Zone 4 has an R2 value of 0.911, lower than the previous three zones. However the relative error was below 0.5%, which is considered very small.

단독주택 적용 지열 히트펌프 시스템의 성능 분석 (Performance Simulation of Ground-Coupled Heat Pump(GCHP) System for a Detached House)

  • 손병후;최종민;최항석
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.392-399
    • /
    • 2011
  • Ground-coupled heat pump(GCHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some work related to performance evaluation of GCHP systems for commercial buildings has been done, relatively little has been reported on the residential applications. The aim of this study is to evaluate the cooling and heating performances of a vertical GCHP system applied to an artificial detached house($117\;m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, borehole diameter, and ground thermal properties, etc. The cooling and heating performance simulation of the system was conducted with different prediction times of 8760 hours and 240 months. The performance characteristics including seasonal system COP, average annual power consumption, and temperature variations related to ground heat exchanger were calculated and compared.

멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구 (A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation)

  • 이현우;최상곤;홍진관
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.745-750
    • /
    • 2009
  • In Korea, since the implementation of the GMO Law, the intrest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. was performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab.(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios was performed in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

  • PDF

차량용 열제어 관리 시스템의 성능 시뮬레이션 프로그램 개발 (Development of Simulation Program of Vehicle Thermal Managements System)

  • 배석정;허형석;김현철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.345-348
    • /
    • 2008
  • The computer-aided performance simulation can reduce periods for development of products and cut down on the cost comparing with former trial-and-error procedures. This study has developed a simulation program for a vehicle thermal management system integrating an engine cooling system and an air conditioning system considering interactions and arrangement of air side heat exchangers such as power steering oil cooler, air-cooled transmission oil cooler, condenser, and radiator. The program may be also used for the system performance analysis according to the configuration of the engine coolant side heat exchangers such as water-cooled transmission oil cooler, EGR cooler, and heater core. Experiments utilizing an environmental wind tunnel has been conducted to assess the performance of the system according to the arrangement of air side heat exchangers. Some modification of the coolant loop layout can enhance the heat core performance up to 7% according to the results of the simulations.

  • PDF

성능진단 데이터로 보정된 모델을 이용한 기존건축물의 에너지시뮬레이션 기법 (Existing Building Energy Simulation Method Using Calibrated Model by Energy Audit Data)

  • 공동석;김두환;장용성;허정호
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.231-239
    • /
    • 2014
  • This paper represents a method of existing building energy simulation using energy audit data. Energy audit must be carried out for reasonable analysis, because characteristics of existing buildings such as efficiency of fan, pump, flow rate, pressure, COP and operating schedule could be changed during the building operation. These building characteristics should be measured to estimate actual energy consumption of the existing building. In this study, we conducted energy audit and calculated energy savings for a 7-stories building as a case-study. The energy audit data were used to calibrate the building model of EnergyPlus simulation. Baseline model validated according to M&V guideline index. As a result, building characteristics are significant parameters making a big impact on energy savings in existing buildings.

CO2 트윈 로타리 압축기의 흡입관로에서의 가스맥동 해석 (Gas Pulsation Analysis in a T-Shaped Suction Passage of a CO2 Twin Rotary Compressor)

  • 김우영;안종민;김현진;조성욱
    • 설비공학논문집
    • /
    • 제23권8호
    • /
    • pp.549-555
    • /
    • 2011
  • For a $CO_2$ one-stage twin rotary compressor, a T-shaped suction port was used to effectively supply the suction gas stream into two individual suction chambers of the twin cylinders. Suction gas pulsations were observed in the pressure sensor signals and these were simulated by using the acoustic modeling of Helmholz resonators in parallel. The module of acoustic modeling was combined to a computer simulation program for the compressor performance. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Particularly, good agreement on P-V diagram between the simulation and the test was obtained.

분배기와 모세관을 고려한 히트펌프용 증발기 성능 모사 (Numerical Simulation of a Heat Pump Evaporator Considering the Pressure Drop in the Distributor and Capillary Tubes)

  • 박영기;예휘열;이관수
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.476-486
    • /
    • 2012
  • A simulation program was developed to evaluate the heat transfer performance of a multi-pass fin-tube evaporator, considering the pressure drop in the distributor and capillary tubes. The effect of capillary tube length for each pass was analyzed with various inlet air flow types and distributions. The appropriate capillary tube length distribution and correlation were determined for various inlet air flow types and distributions. The correlated results agreed well with the simulation, with an average error of less than 7%. By applying an optimal capillary tube length distribution, the heat transfer rate was increased by 4~5% compared to cases with uniform tubelength distributions, for each of the inlet air flow types and distributions considered in this study.

TRNSYS 시뮬레이션을 통한 시스템 에어컨의 구현과 타당성 검증 (Development of the TRNSYS Simulation Modules for System Air-Conditioner and Its' Verification)

  • 기현승;홍인표;박준원;강기남;송두삼
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.315-322
    • /
    • 2012
  • In these days, importance of HVAC system in office building is steadily growing in terms of thermal comfort and energy savings. As a energy efficient heating and cooling system, system air-conditioner which can be controlled distinctly and has a high COP is more widely adopted nowadays. However, the features and advantages of system air-conditioner were not reported well because system air-conditioner did not describe yet by conventional simulation methods such as TRNSYS, e-Quest, Energyplus, etc. In this study, by using the TRNSYS program which is able to show module implementation and building energy consumption analysis, system air-conditioner module will be proposed and validated through comparison between the simulation results and measurement results.