• Title/Summary/Keyword: conditional mean model

Search Result 96, Processing Time 0.021 seconds

Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine (HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

Estimation for the Exponential ARMA Model (지수혼합 시계열 모형의 추정)

  • Won Kyung Kim;In Kyu Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.239-248
    • /
    • 1994
  • The Yule-Walker estimator and the approximate conditional least squares estimator of the parameter of the EARMA(1, 1) model are obtained. These two estimators are compared by simulation study. It is shown that the approximate conditional least squares estimator is better in the sense of the mean square error than the Yul-Walker estimator.

  • PDF

Nonparametric Stock Price Prediction (비모수 주가예측 모형)

  • Choi, Sung-Sup;Park, Joo-Hean
    • The Korean Journal of Financial Management
    • /
    • v.12 no.2
    • /
    • pp.221-237
    • /
    • 1995
  • When we apply parametric models to the movement of stock prices, we don't know whether they are really correct specifications. In the paper, any prior conditional mean structure is not assumed. By applying the nonparametric model, we see if it better performs (than the random walk model) in terms of out-of-sample prediction. An interesting finding is that the random walk model is still the best. There doesn't seem to exist any form of nonlinearity (not to mention linearity) in stock prices that can be exploitable in terms of point prediction.

  • PDF

A Stay Time Optimization Model Emergency Medical Center (EMC) (응급의료센터 체류시간 최적화)

  • Kim, Eun-Joo;Lim, Ji-Young;Ryu, Jeong-Soon;Cho, Sun-Hee;Bae, Na-Ri;Kim, Sang-Suk
    • Journal of Home Health Care Nursing
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2011
  • Purpose: The aim of this study was to estimate optimization model of stay time in EMC. Methods: Data were collected at an EMC in a hospital using medical records from June to August in 2007. The sample size was 8,378. The data were structured by stay time for doctor visit, decision making, and discharge from EMC. Descriptive statistics were used to find out general characteristics of patients. Average mean and quantile regression models were adopted to estimate optimized stay time in EMC. Results: The stay times in EMC were highly skewed and non-normal distributions. Therefore, average mean as an indicator of optimal stay time was not appropriate. The total stay time using conditional quantile regression model was estimated about 110 min, that was about 166 min shorter than estimated time using average mean. Conclusion: According to these results, we recommend to use a conditional quantile regression model to estimate optimal stay time in EMC. We suggest that this results will be used to develop a guideline to manage stay time more effectively in EMC.

  • PDF

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula (비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.689-700
    • /
    • 2016
  • We study estimation and inference of the joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Regression parameters in the transformation model can be obtained as the solution of estimating equations and our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Nonparametric copulas combined with time-varying transformation models may allow quite flexible modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

Characteristization of Spray Combustion and Turbulent Flame Structures in a Typical Diesel Engine Condition (디젤 엔진 운전 조건에서 분무 연소 과정과 난류 화염 구조 특성에 대한 해석)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2009
  • Simulation is performed to analyze the characteristics of turbulent spray combustion in a diesel engine condition. An extended Conditional Moment Closure (CMC) model is employed to resolve coupling between chemistry and turbulence. Relevant time and length scales and dimensionless numbers are estimated at the tip and the mid spray region during spray development and combustion. The liquid volume fractions are small enough to support validity of droplets assumed as point sources in two-phase flow. The mean scalar dissipation rates (SDR) are lower than the extinction limit to show flame stability throughout the combustion period. The Kolmogorov scales remain relatively constant, while the integral scales increase with decay of turbulence. The chemical time scale decreases abruptly to a small value as ignition occurs with subsequent heat release. The Da and Ka show opposite trends due to variation in the chemical time scale. More work is in progress to identify the spray combustion regimes.

  • PDF

A Test on the Volatility Feedback Hypothesis in the Emerging Stock Market (신흥주식시장에서의 변동성반응가설 검정)

  • Kim, Byoung-Joon
    • The Korean Journal of Financial Management
    • /
    • v.26 no.4
    • /
    • pp.191-234
    • /
    • 2009
  • This study examined on the volatility feedback hypothesis through the use of threshold GARCH-in-Mean (GJR-GARCH-M) model developed by Glosten, Jaganathan, and Runkle (1993) in the stock markets of 14 emerging countries during the period of January, 1996 to May, 2009. On this study, I found successful evidences which can support the volatility feedback hypothesis through the following three estimation procedures. First, I found relatively strong positive relationship between the expected market risk premiums and their conditional standard deviations from the GARCH-M model in the basis of daily return on each representative stock market index, which is appropriate to investors' risk-averse preferences. Second, I can also identify the significant asymmetric time-varying volatility originated from the investors' differentiated reactions toward the unexpected market shocks by applying the GJR-GARCH-M model and further find the lasting positive risk aversion coefficient estimators. Third, I derived the negative signs of the regression coefficient of unpredicted volatility on the stock market return by re-applying the GJR-GARCH-M model after I controlled the positive effect of predicted volatility through including the conditional standard deviations from the previous GARCH-M model estimation as an independent explanatory variable in the re-applied new GJR-GARCH-M model. With these consecutive results, the volatility feedback effect was successfully tested to be effective also in the various emerging stock markets, although the leverage hypothesis turned out to be insufficient to be applied to another source of explaining the negative relationship between the unexpected volatility and the ex-post stock market return in the emerging countries in general.

  • PDF

Nonlinear Autoregressive Modeling of Southern Oscillation Index (비선형 자기회귀모형을 이용한 남방진동지수 시계열 분석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.997-1012
    • /
    • 2006
  • We have presented a nonparametric stochastic approach for the SOI(Southern Oscillation Index) series that used nonlinear methodology called Nonlinear AutoRegressive(NAR) based on conditional kernel density function and CAFPE(Corrected Asymptotic Final Prediction Error) lag selection. The fitted linear AR model represents heteroscedasticity, and besides, a BDS(Brock - Dechert - Sheinkman) statistics is rejected. Hence, we applied NAR model to the SOI series. We can identify the lags 1, 2 and 4 are appropriate one, and estimated conditional mean function. There is no autocorrelation of residuals in the Portmanteau Test. However, the null hypothesis of normality and no heteroscedasticity is rejected in the Jarque-Bera Test and ARCH-LM Test, respectively. Moreover, the lag selection for conditional standard deviation function with CAFPE provides lags 3, 8 and 9. As the results of conditional standard deviation analysis, all I.I.D assumptions of the residuals are accepted. Particularly, the BDS statistics is accepted at the 95% and 99% significance level. Finally, we split the SOI set into a sample for estimating themodel and a sample for out-of-sample prediction, that is, we conduct the one-step ahead forecasts for the last 97 values (15%). The NAR model shows a MSEP of 0.5464 that is 7% lower than those of the linear model. Hence, the relevance of the NAR model may be proved in these results, and the nonparametric NAR model is encouraging rather than a linear one to reflect the nonlinearity of SOI series.

Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transported Probability Density Function Model (수송확률밀도함수 모델을 이용한 난류비예혼합 파일럿 안정화 화염장 해석)

  • Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.15-21
    • /
    • 2010
  • The transported probability density function(PDF) model has been applied to simulate the turbulent nonpremixed piloted jet flame. To realistically account for the mixture fraction PDF informations on the turbulent non-premixed jet flame, the present Lagrangian PDF transport approach is based on the joint velocity-composition-turbulence frequency PDF formulation. The fluctuating velocity of stochastic fields is modeled by simplified Langevin model(SLM), turbulence frequency of stochastic fields is modeled by Jayesh-Pope model and effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate the present approach, the numerical results obtained by the joint velocity-composition-turbulence frequency PDF model are compared with experimental data in terms of the unconditional and conditional means of mixture fraction, temperature and species and PDFs.

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.