• Title/Summary/Keyword: condition assessment of concrete bridges

Search Result 26, Processing Time 0.029 seconds

COBDA-An Expert System for Concrete Bridge Deterioration Assessment (COBDA-콘크리트 교량의 노후화를 평가하는 전문가 시스템)

  • ;Cabrera
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.532-539
    • /
    • 1996
  • Existing assessment methodologies present a considerable problem because of fuzzy situation of deterioration mechanism of concrete bridges; namely, qualitative, subjective or inconsistent. This paper discusses current assessment methods in aspect of uncertainty. The expert system, COBDA, is developed for consistent and fast assessment of deteriorantion of concrete bridges. Briefly introduced in this paper are the structure of expert system and several methodologies for decision making of deterioration situation and providing repair option. COBDA is configured by PROLOG for logic approach and expert system shell based on Bayesian subjective probability. The methodologies are illustrated and discussed by comparison of condition assessment results in a case study.

  • PDF

Safety Assessment and Capacity Rating of Existing P.C, Bridges based on Reliability Methods (신뢰성 방법에 기초한 기설 P.C교의 안전도 및 내하력 평가)

  • 조효남;김민영;서종원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.45-50
    • /
    • 1990
  • This study develops practical models and methods for the assessment of safety and capacity rating of existing P.C. girder bridges based on the reliability methods. One of the main objectives of the study is to propose a practical but realistic limit state model for safety assessment and LRFR rating criteria, which explicitly incorporates the degree of deterioration and damage as well as actual condition of P.C. girder bridges in terms of the damage factor and the response ratio. The damage factor proposed in the paper is defined as the ratio of the current estimated stiffness to the intact base-line stiffness of a member. Based on the observation and the results of applications to existing bridges, it may be concluded that the proposed methods for the assessment and capacity rating models, which explicitly account for the uncertainties and effects of degree of deterioration or damage, provide more realistic and consistent safety-assessment and capacity rating.

  • PDF

Development of Expert System for Fatigue Assessment of Slab Bridge (슬래브교의 피로도 평가 전문가 시스템)

  • 오병환;김세훈;박종범;김지상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.396-401
    • /
    • 2003
  • For a realistic and reasonable determination of condition and status, assessment system should include load modeling for the loads acting on slab bridges due to traffic loads, evaluation system for fatigue, and determination of remaining service life. The purpose of the present study is to develop a realistic expert system which can estimate reasonably the fatigue and service life of slab bridges, based on the load models that are derived from the traffic loads.

  • PDF

Condition Assessment Criteria for Bridges (교량의 외관상태평가 기준 정립에 대한 연구)

  • 오병환;신경준;이상철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1285-1290
    • /
    • 2000
  • The inspection of bridge condition is of extreme importance. Current inspection codes for bridge inspection are vague and uncertain. So, the results are highly subjective and different from person to person and even day to day for a given person. To circumvent possible inconsistencies in inspection and rating of bridge components, the revised inspection guidelines have been proposed.

  • PDF

Development of Quantitative Model for Structural Performance of Concrete Bridges Considering of Loads and Environmental Factors (하중과 환경인자를 고려한 콘크리트교량의 정량적 구조성능 평가모델 개발)

  • Oh, Byung-Hwan;Kim, Dong-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.235-242
    • /
    • 2004
  • Bridge Management System (BMS) requires a more objective condition assessment over the lifespan of a given bridge. Thus, a quantitative assessment model of resistance capacity was developed here to meet the requirement for deteriorated concrete bridges. The model focuses on damage mechanisms of concrete bridges deteriorated by traffic loads and environment factors such as chloride and carbonation attacks. Also, it was applied to a typical concrete slab bridge which was severely damaged due to both load and environmental conditions. It was shown that the proposed quantitative model simulates well the deterioration level considering the two damage criteria.

Analysis of Safety Evaluation Guidelines for Practical Maintenance of Existing Concrete Structures (노후 콘크리트 구조물의 실용적 유지관리를 위한 콘크리트 구조물 안전진단 지침 분석)

  • Lee, Joo-Hyung;Cho, Jae-Yeol
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.83-92
    • /
    • 2020
  • In South Korea, problems caused by material deterioration of time-worn concrete structures have been increased recently. Because severe material deterioration could damage the structure's safety, it's important to evaluate the old structure's condition and structural capacity regularly to keep its proper performance. The safety evaluation of concrete structures has been initiated and performed periodically since 1995 according to a guideline in accordance with a law in Korea. The guideline prescribes the evaluation types, intervals and methods of the target structure. A lot of cost and labor have been invested every year to carry out the regular safety evaluation. However, it's not clear that the current manual could inspect the old structure's condition and assess the structural capacity precisely. Thus, the verification study initiated to figure out the Korean safety evaluation manual's practicalness. First, the Korean manual was analyzed and then compared with that of other countries for concrete bridges which are representative concrete structure. After that, the previously written evaluation reports were collected and analyzed to find out how the safety evaluation has been carried out. Based on the study results, the parts requiring verification of the manual were drawn. A research program is in progress in order to verify the parts by performing tests with actual structural members from decommissioned concrete bridges.

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.

PERFORMANCE INDEX-An Assessment Indicator of Concrete Bridges (콘크리트 교량의 상태 평가를 위한 성능지수)

  • Kim, Kyoung-Soo;Cabrera, J.G.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.131-140
    • /
    • 1997
  • 콘크리트 교량을 저렴하고 신속하게 상태 평가를 하기 위하여 성능 지수(Performance Index)를 제안한다. 이 기법은 육안 검사에 의하여 발견된 결함의 범위와 심각도를 사용하여 콘크리트 교량의 전반적인 상태를 신속하게 등급화 하고 콘크리트 교량의 노출 조건을 고려하여 콘크리트 성능을 정량적으로 평가한다. 또한 본 연구에서는 상기한 성능 지수 기법의 타당성을 증명할 수 있는 정밀 안전 진단 시험결과를 활용하여 6개의 주요 노후화 원인을 고려하는 또 다른 성능 지수를 제안한다. 이러한 두 상태 평가 방법이 영국의 실제 교량 상태 평가 자료를 바탕으로 한 상태 평가 결과를 퍼지 집합 이론(fuzzy set theory)으로 분석한 결과와 비교하여 방법의 정당성 및 신뢰성을 논의한다.

  • PDF

A Decision Support Methodology for Remediation Planning of Concrete Bridges

  • Rashidi, Maria;Lemass, Brett
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • Bridges are critical and valuable components in any road and rail transportation network. Therefore bridge remediation has always been a top priority for asset managers and engineers, but identifying the nature of true defect deterioration and associated remediation treatments remains a complex task. Nowadays Decision Support Systems (DSS) are widely used to assist decision makers across an extensive spectrum of unstructured decision environments. The main objective of this research is to develop a requirements-driven methodology for bridge monitoring and maintenance which has the ability to assess the bridge condition and find the best remediation treatments using Simple Multi Attribute Rating Technique (SMART); with the aim of maintaining a bridge within acceptable limits of safety, serviceability and sustainability.

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.