• Title/Summary/Keyword: condensation heat transfer

Search Result 337, Processing Time 0.033 seconds

Basic Analysis of Heat and Mass Transfer Characteristics of Tubular Membrane Humidifier for Proton Exchange Membrane Fuel Cell (이온교환막 연료전지용 원통형 막 가습기의 열 및 물질전달특성 기초 연구)

  • Bae, Ho-June;Ahn, Kook-Young;Lee, Young-Duk;Kang, Sang-Kyu;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • The proton exchange membrane (PEM) fuel cell system is critically dependent on the humidity, which should be properly maintained over the entire operating range. A membrane humidifier is used for the water management in the PEMFC because of the membrane humidifier's reliable performance and zero parasitic power loss. In the PEMFC system, the membrane humidifier is required to provide appropriate humidity for the design point of the fuel cell. Although the performance of the fuel cell depends on the performance of the humidifier, few studies have provided a systematic analysis of the humidifier. We carry out an experimental analysis of the membrane humidifier using a vapor condensation bottle. The dry air pressure, water flow temperature, and air flow rate were chosen as the operating parameters. The results show that the time constant for the dynamic response of the membrane humidifier is relatively short, but additional analysis should be carried out.

A Study on the Effect of Hot Lines and the Assembly of Flange for a Refrigerator to Reduce Dew Generation (냉장고 Flange부 이슬 맺힘 방지를 위한 열선의 영향 및 조립에 관한 연구)

  • Kim, Na Hyun;Cho, Jong Rae;Park, Sang Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.391-396
    • /
    • 2015
  • When the temperature of a flange in a refrigerator is reduced to the dew point, condensation is generated on the flange. Generally, hot lines, having a temperature of $35^{\circ}C$, are located near the flange to increase its surface temperature above the dew point. Hot lines are installed in close contact with the flange in order to increase the heat transfer from the hot lines to the flange surface. Through this work, the effects of the hot line shape and installation conditions, including a gap between the hot line and flange, and the function of a spacer in the inner case of the refrigerator were investigated. Additionally, an optimal shape of the inner case for easy assembling is proposed considering the contact between the hot line and flange.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Genetic Analyses of Heading and Maturing Dates and Their Relationship to Freezing Resistance in Barley (보리 출수기와 성숙기의 유전분석 및 내동성과의 관계)

  • 천종은;강석원
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.395-401
    • /
    • 2002
  • The combination of early heading time, maturing time and short grain-filling period is very important to develop early varieties in winter barley. The 4 parental half diallel crosses (parents, $F_1$s, $F_2$s) were cultivated at the field. The heading date was from April 3 to 26, maturing date from May 15 to 27 and grain-filling period from 31 days to 42 days, showing that the varietal differences about the 3 traits were remarkable. According to half diallel cross analyses, Dongbori 1 for heading time (late heading) was dominant, but Oweolbori (early heading) was recessive, showing partial dominance with high additive component of genetic variance. Dongbori 1 for maturing time was dominant, but Oweolbori was recessive, showing partial dominance with high additive variance. Reno for grain-filling period (short grain-filling period) was dominant, but Oweolbori (long grain-filling period) was recessive with additive, and partial dominance. There were highly significant mean squares for both GCA and SCA effects on the heading and maturing times, and GCA/SCA ratios for all traits were high, showing the additive gene effects more important. Sacheon 6 and Oweolbori had greater GCA effects for early heading and maturing times, and Dongbori 1 and Reno had greater GCA effects for late times. GCA effects were highly significant in $F_1$ and $F_2$ generations, showing high GCA/SCA ratios (7.02). The heading and maturing times in field were positively correlated with antifreeze proteins concentrations, accumulation, resistance to photoinhibition and winter survival, respectively) but the grain-filling period did negatively correlated with the trails.

Effects of Salt Treatment on Yield and Physiological Characteristics of Flag Leaf at Heading Stage in Winter Barley (보리 출수기 염처리가 수량 및 지잎의 생리적 특성에 미치는 영향)

  • 최원열;김영민;박종환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.409-412
    • /
    • 2002
  • This research was conducted to obtain the fundamental data on salt injury and different responses among cultivars in winter barley (Hordeum vulgare L.). Salts did not affect yield components including number of panicles, stem length, grain number per ear and grain yield while reduced stem dry weight and thousand seed weight significantly with increasing concentrations of salt from 60 to 180 mM. NaCl had less injury effect on barley straw dry weight and thousand seed weight than did $MgSO_4$. Chlorophyll content and relative turgidity in flag leaf were reduced when treated with both salts, while free proline in the salt-treated leaf was increased. Content of proline in salt-treated barley was about 10 folds compared to the control. Based on yield components and physiological traits of flag leaf, the tolerance to salt injury was the greatest in Baegdong, followed by Dongbori#1, Mogpo#55, and Gangbori. The results suggested that salt- stressed barley at reproductive stage had higher free proline content, and that special management in this stage must be considered because salt stress at heading stage affect flag leaf growth as well as yield components Harmfully.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.