• 제목/요약/키워드: concrete-reinforcement interface

검색결과 99건 처리시간 0.026초

인장 보강재 및 거푸집으로 활용한 FRP 판과 타설 콘크리트 사이의 부착에 관한 실험적 연구 (Bond Slip Behavior of Cast-In-Place Concrete and FRP Plank Using Formwork and Tensile Reinforcement)

  • 유승운
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.309-312
    • /
    • 2006
  • An experimental study for bond slip behavior of concrete and a FRP plank was used as the both formwork and the tensile reinforcement for a concrete structural member is described. For the FRP plank and the concrete to act as a composite structural member a satisfactory bond at the interface between the smooth surface of the FRP and the concrete must be developed. This study focuses on investigation of the bond slip behavior of sand coated interface between FRP and cast-in-place concrete experimentally.

  • PDF

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

콘크리트 구조물의 철근부식으로 인한 균열발생에 관한 실험적, 해석적 결과의 비교 (The comparison between experimental and FEA results for crack initiation due to corrosion of reinforcement)

  • 장상엽;김용철;조용범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.693-698
    • /
    • 2003
  • Corrosion of reinforcement and deterioration of concrete short the lifetime of reinforced concrete structure and affect the safety of the structure. In particular, the corrosion of reinforcement causing the inner pressure of the interface between the concrete and reinforcement is known to significantly contribute to the premature deterioration of concrete structure. Several attempts have been made to predict the cracking time of the concrete structure. However, problems such as the lack of reproducibility of concrete tests and non-uniformity of materials have hampered thess kinds of studies. Thus, the mechanism of the concrete cracking due to reinforcement corrosion is in the way. This studymeasured the mechanical properties of corrosion products using the nano-indentation test method. Likewise, the critical thickness of corrosion products for the cracking of concrete cover was investigated using the finite element and experimental methods.

  • PDF

시공줄눈이 있는 콘크리트 경계면의 전단마찰 내력에 대한 보강철근의 영향 (Effect of Transverse Reinforcement on the Shear Friction Capacity of Concrete Interfaces with Construction Joint)

  • 황용하;양근혁
    • 콘크리트학회논문집
    • /
    • 제28권5호
    • /
    • pp.555-562
    • /
    • 2016
  • 이 연구의 목적은 부드러운 면의 시공줄눈을 가지는 콘크리트 경계면에서의 횡보강근의 전단전달력을 평가하는 것이다. 횡보강근의 배근은 전단마찰 면에 수직으로 배근한 그룹(V-type)과 $45^{\circ}$의 X형으로 교차배근 한 그룹(X-type)으로 나누었다. 전단마찰면에서 횡보강근비는 V형 철근배근의 경우 0.0045~0.0135로, X형 철근의 경우 0.0064 및 0.0045이다. 소성론의 상계치 이론(upper-bound theorem)을 기반으로 한 일체화된 콘크리트의 전단마찰모델을 수정하여, 부드러운 면의 시공줄눈을 갖는 콘크리트의 전단마찰내력을 평가하였다. 실험결과, 시공줄눈이 있는 두 부재사이의 전단마찰 내력에 대한 콘크리트 단위용적중량의 영향은 미미하였다. 시공줄눈에서 상대 미끄러짐 제어 및 전단마찰내력에 대해서는 X형 배근이 V형 배근에 비해 다소 유리하였다. 부드러운 면을 갖는 시공줄눈의 전단마찰내력에 대한 실험결과와 제안모델에 의한 예측값의 비들의 평균과 표준편차는 각각 1.07과 0.14로 나타났다.

콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향 (Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete)

  • 황용하;양근혁
    • 콘크리트학회논문집
    • /
    • 제28권4호
    • /
    • pp.419-426
    • /
    • 2016
  • 이 연구에서는 다양한 콘크리트를 갖는 전단계면에서의 전단마찰거동에 대한 횡보강근 및 압축응력의 영향을 평가하였다. 12개 직접전단실험체로부터 균열진전, 전단하중-상대 미끄러짐 관계, 균열발생시 전단응력, 최대전단내력 및 횡보강근의 전단저항력 등이 측정되었다. 실험결과 동일 전단하중에서 상대 미끄러짐 제어에 대한 횡보강근 배근형상 및 콘크리트 압축강도의 영향은 미미하였다. 작용 압축응력의 증가와 함께 콘크리트의 전단전달력을 증가하는 반면, 횡보강근의 전단전달력은 감소하였는데, 횡보강근의 전단저항은 배근형태에 의해 영향을 받지 않았다. AASHTO-LRFD, Mattock 및 Hwang and Yang의 모델은 콘크리트의 전단마찰내력을 과소평가하였다. 반면, Hwang and Yang의 모델은 실험결과와의 비교에 대한 평균과 표준편차 값이 각각 1.02과 0.23으로서 기존 모델에 비해 다양한 변수의 영향을 적절히 고려하면서 콘크리트의 전단마찰내력을 잘 예측하였다.

Symptom-based reliability analyses and performance assessment of corroded reinforced concrete structures

  • Chen, Hua-Peng;Xiao, Nan
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1183-1200
    • /
    • 2015
  • Reinforcement corrosion can cause serious safety deterioration to aging concrete structures exposed in aggressive environments. This paper presents an approach for reliability analyses of deteriorating reinforced concrete structures affected by reinforcement corrosion on the basis of the representative symptoms identified during the deterioration process. The concrete cracking growth and rebar bond strength evolution due to reinforcement corrosion are chosen as key symptoms for the performance deterioration of concrete structures. The crack width at concrete cover surface largely depends on the corrosion penetration of rebar due to the expansive rust layer at the bond interface generated by reinforcement corrosion. The bond strength of rebar in the concrete correlates well with concrete crack width and decays steadily with crack width growth. The estimates of cracking development and bond strength deterioration are examined by experimental data available from various sources, and then matched with symptom-based lifetime Weibull model. The symptom reliability and remaining useful life are predicted from the predictive lifetime Weibull model for deteriorating concrete structures. Finally, a numerical example is provided to demonstrate the applicability of the proposed approach for forecasting the performance of concrete structures subject to reinforcement corrosion. The results show that the corrosion rate has significant impact on the reliability associated with serviceability and load bearing capacity of reinforced concrete structures during their service life.

신구콘크리트 계면의 전단강도 측정을 위한 정하중 및 피로하중 보실험 (Beam Tests for Static and Fatigue Interface Shear Strength between Old and Njew Concretes)

  • 최동욱
    • 콘크리트학회지
    • /
    • 제9권3호
    • /
    • pp.137-147
    • /
    • 1997
  • 신구콘크리트 계면(접합부)의 전단강도 측정을 목적으로 보시험체를 사용한 정하중 및 피로하중의 재하실험이 수행되었다. 총 13개의 시험체중에서 정적재하실험을 통하여 5개 시험체의 전단강도를 측정하였고, 8개의 시험체는 2,000,000회 또는 3,000,000회의 반복하중을 가력한 후 전단강도를 측정하였다. 실험변수는 접합부거칠기, 전단보강철근 및 시구콘크리트간 부착력의 유무이었다. 정적재하실험에서, 접합부가 거칠면서 콘크리트간 부착력이 존재한 시험체의 경우, 평균전단강도는 $61kgf/cm^2$이었다. 유사한 조건의 시험체의 3,000,000회의 전단하중을 가력한 피로하중실험에서 접착부의 열화현상은 나타나지 않았다. 이 때 반복가력된 최대전단응력은 $20kgf/cm^2$으로 전단강도의 약 1/3수준이었다. 접합부가 거칠게 처리되지 않은 시험체와 접합부는 거칠지만 콘크리트간 부착력이 인위적으로 제거된 시험체의 경우에는 전단보강철근을 사용하여도 피로하중에 의한 접합부의 열화현상이 나타났다.

유한 요소법을 이용한 콘크리트 벽체 균열을 발생시키는 철근의 임계 부식량에 대한 연구 (Study on the Amount of Critical Corrosion Products of Reinforcement inducing Concrete Cover Cracking with Finite Element Analysis)

  • 김광웅;장상엽;조용범;김용철;고영태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.361-366
    • /
    • 2002
  • The deterioration of concrete structure due to corrosion of the reinforcement has created big financial losses on the overall industries. The volume expansion of the corrosion products causes internal pressure to concrete wall around reinforcing bar. If the maximum principal stress induced by internal pressure exceeds the tensile strength of the concrete at any point of time, a crack forms at any point of material. Therefore, in terms of life assessment of concrete structure, it is very important to predict the amount of corrosion products which induces initial concrete cracking. With this objective, this paper proposes the critical amount of corrosion products at interface between reinforcement and concrete using finite element analysis. If an actual survey of corrosion rates could be made, the model might supply information for condition assessment of existing concrete structure. As the mechanical properties of corrosion product and instantaneous geometry of corroded steel are considered in the analysis, the value obtained will be more realistic.

  • PDF

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • 제16권2호
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.