• Title/Summary/Keyword: concrete tunnel

Search Result 594, Processing Time 0.023 seconds

A Case Study on the Design and Construction of a 2-arch Tunnel with Varying Section (2-아치 변단면터널의 설계 및 시공사례 연구)

  • Choi, Jae-Jin;Park, Yeon-Jun;Kim, Si-Keun;Park, Jae-Hyun
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.310-320
    • /
    • 2012
  • This paper describes the design and construction of a 2-arch tunnel with varying section. This new design has advantages of 2-arch tunnels, which is rather expensive, but is still economically competitive compared to parallel tunnels. Economic analysis was also conducted. To secure the stability of the varying section tunnel, excavated part was reinforced by tie-bolts and RRS, and 2-arch part was supported by EPS blocks and concrete walls. Stability of the pillar was theoretically analyzed and also examined by numerical simulations for various widths. Displacement monitoring was conducted and results were compared with numerical results. Economic analysis showed reductions in construction cost and period by 11% and 10 months respectively.

A study on establishment of measurement and analysis frequency of maintenance monitoring in tunnel (터널 유지관리계측의 측정 및 분석주기 설정 연구)

  • Woo, Jong-Tae;Lee, Kang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.2
    • /
    • pp.117-129
    • /
    • 2012
  • In this study, research was performed to establish the measurement and frequency of analysis for maintenance monitoring by investigation of tunnel maintenance monitoring system in the tunnel which was installed in the Seoul metro line 5, 7 and 8, using that the domestic and foreign application case, results of analyzed maintenance monitoring in the domestic tunnel and legal safety management standard of the facility. The results of the monitoring management about analysis frequency to the present are considered that the problem about measuring frequency does not occur. According to the analysis results of the maintenance monitoring which are located on the 5, 6th subway line, they are analyzed that the stress of concrete lining and reinforced bar are converged gradually after 45 months. Therefore Monitoring of measurement and analysis frequency is conduct more often within about 4 years after the measuring instrument installation. Four years later, slowing the frequency of measurement is considered reasonable.

Structural monitoring and analyses on the stability and health of a damaged railway tunnel

  • Zhao, Yiding;Yang, Junsheng;Zhang, Yongxing;Yi, Zhou
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.375-386
    • /
    • 2021
  • In this paper, a study of stability and health of a newly-built railway tunnel is presented. The field test was implemented to monitor the secondary lining due to the significant cracking behaviors influenced the stability and health of the tunnel structure. Surface strain gauges were installed for monitoring the status of crack openings, and the monitoring outputs demonstrated that the cracks were still in the developing stage. Additionally, adjacent tunnel and poor condition of surrounding rock were identified as the causes of the lining cracking by systematically characterizing the crack spatial distribution, tunnel site and surrounding rock conditions. Reconstruction of partial lining and reconstruction of the whole secondary lining were designed as the maintenance projects for different cracking regions based on the construction feasibility. For assessing the health conditions of the reinforced lining, embedded strain gauges were set up to continuously measure the strain and the internal force of the reconstructed structures. For the partially reconstructed lining, the outputs show the maximum tensile elongation is 0.018 mm during 227 days, which means the structure has no obvious deformation after maintenance. The one-year monitoring of full-section was implemented in the other two completely reconstructed cross-sections by embedded strain gauge. The outputs show the reconstructed secondary lining has undertaken the pressure of surrounding rock with the time passing. According to the calculated compressive and tensile safety factors, the completely reconstructed lining has been in reliable and safe condition during the past year after reinforcement. It can conclude that the aforementioned maintenance projects can effectively ensure the stability and health of this tunnel.

A feasibility study on the estimation of a potential relaxed zone in the discontinuum coupled analysis of a subsea tunnel (해저터널의 불연속체 연계해석 시 잠재적 이완영역 평가 방법의 타당성 연구)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.141-150
    • /
    • 2009
  • When constructing a subsea tunnel in discontinuous rock mass, fluid flow in joints has a great influence on the behavior of the tunnel so that hydro-mechanical coupled analysis should be performed for the stability estimation. In practice, relaxed rock load is generally used for the design of tunnel concrete lining. In a continuum analysis, a method based on the distribution of local safety factor around a tunnel was proposed for the estimation of a potential relaxed zone. However, in the case of discontinuous rock mass in which joints are developed, the whole stability of tunnels depends on the behavior of the joints. In this study, therefore, a method is proposed for the estimation of a potential relaxed zone occurred by the excavation of a tunnel in discontinuous rock mass. The suggested method is validated by sensitivity analysis and the comparison with the results of continuum analysis.

Mechanical Properties of Concrete Pavement by Low Fraction of Macro Fiber (매크로 섬유의 저혼입에 따른 콘크리트 포장의 역학적 특성)

  • Choi, Sung-Yong;Park, Young-Hwan;Jung, Woo-Tai;Park, Jong-Sup
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.1-11
    • /
    • 2012
  • PURPOSES : The purpose of the study was to examine dynamic features of concrete after mixing a little macro fiber with small aspect ratio and long length utilized for bridge, tunnel and shotcrete for tensile performance and crack control in domestic/overseas countries with cement concrete pavement mix. METHODS : Coarse aggregates with small aspect ratio and macro fibers with maximum length of approximately 32 mm are introduced in small quantities in the mix proportions of concrete pavement so as to prevent loss of the workability. Then, this study intends to evaluate the applicability of macro fibers in the mix proportions of concrete pavement by examining the basic construction performance, as well as the change of toughness, the equivalent bending strength and the flexural toughness index caused by compression, bending, tension and the flexural stress-displacement curve. RESULTS : As the results, in each kind of macro fiber, polyvinyl alcohol fiber and steel fiber displayed a good performance. CONCLUSIONS : In 0.2 and 0.3% of fiber contents, it is appeared that polyvinyl alcohol fiber has a large effect on improvement of tensile performance and steel fiber on improvement of deforming performance of bending stress.

Flexural Performance of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유보강 EVA 콘크리트의 휨 성능)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • This study was performed to evaluate the effective analysis of flexural performance for polypropylene fiber (PF) reinforced EVA concrete that can be used in marine bridge, tunnel and agricultural structures under flexural load. The control design was applied in ready mixed concrete using 10 % fly ash of total binder weight used in batch plant. On the basis of the control mix design, there was designed mix types that contained PF ranged from 0 % to 0.5 % by volume ratio into two mix types of using 0 % and 5.0 % EVA contents of total binder weight. Before evaluating the flexural performance, we tested compressive strength and flexural strength to evaluate whether polypropylene fiber reinforced concrete could be used or not in site. The method of flexural performance evaluation was applied by ASTM C 1609. These results showed the maximum compressive strength and flexural strength was measured at each E5P1 and E5P2. Concrete reinforced with PF exhibited deflection-softening behavior. In the concrete reinforced with 0.4 % PF contents and containing 5.0 % EVA, the flexural performance was the best.

Mechanical behavior and simplified models for the post-tensioned prestressed concrete lining

  • Fan Yang;Kang Liu;Yan-qiao Wang;Ming Huang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • To investigate the mechanical behavior of the post-tensioned prestressed concrete lining (PPCL), the desilting tunnel of the Xiaolangdi Hydro Project in China is adopted as a case, and a detailed three-dimensional continuum model verified by the observation results is established for the PPCL. The radial stresses, longitudinal stresses, axial forces and bending moments of the PPCL under the completed cable tension condition (CCTC) and design water pressure condition (DWPC) are analyzed, respectively. The numerical results reveal that the PPCL concrete is significantly compressed in the circumferential direction by the prestress, while the prestress has a negligible influence on the radial stresses of the PPCL concrete. It should be noted that the concrete near the anchor slots has a complex and adverse stress state with stress concentration, longitudinal tensioning and large bending moment. In addition, a simplified shell model and a further simplified beam model which can take the influences of the prestress loss and the anchor slot into consideration are proposed for the PPCL. The results of the simplified models are in a good agreement with these of the three-dimensional continuum model, and they can be used as efficient approaches for the structural design and analysis of the PPCL.

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

Analysis of Mechanical Behavior of Existing Tunnel by the Construction of Shaft Nearby (근접한 수직구 건설에 따른 기존 터널의 역학적 거동 분석)

  • 이석원;조만섭;이성원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.109-122
    • /
    • 2003
  • In order to release the pressure fluctuations and micro-pressure wave induced by the entering of train into the small cross sectional tunnel, it has been reported that the construction of air shaft has more advantages with respect to economy and constructability than the enlargement of cross section of existing tunnel. The field monitorings and analytical studies were conducted simultaneously in this study to analyze the mechanical behavior of existing railway tunnel, new cross tunnel and new shaft by the construction of new shaft nearby. The results showed that the minimum distance from existing tunnel to new shaft which secures the stability of existing tunnel was found to be half diameter of existing tunnel. On the three dimensional mechanical behavior of existing tunnel by the construction of new shaft, the results from the analytical study and field monitoring had a similar trend. The analytical study and field monitoring results, however, produced somewhat different results on the mechanical behavior of new shaft itself. These conclusions induce that the analytical method which has been applied on the analyses of horizontal tunnel could not be applied in the same way on the analysis of vertical shaft.

Evaluation of tensile properties of SFRC for TBM tunnel segment (TBM 터널 세그먼트용 강섬유보강 콘크리트의 인장특성 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.247-260
    • /
    • 2012
  • In order to reduce the amount of steel reinforcements in TBM tunnel segments, the use of Steel Fiber Reinforced Concrete(SFRC) is being tried. The steel fibers with higher aspect ratio than that used in tunnel shotcrete are preferred to compensate the deficiency in tensile strength of the segments. In this study, the tensile properties of SFRC with aspect ratio of steel fibers equal to 80 were evaluated through flexural test and Double Punch Test. In the results of flexural test, flexural strengths of the SFRC were increased about 30%~150% thanks to bond of steel fibers used to concrete and could be properly predicted by the equation proposed by Oh(2008). There was a great difference in the estimated direct tensile strengths of the SFRC by the equations presented in ACI and RILEM. It was found that the Double Punch Test could be suitable methodology to estimate the direct tensile strength presented in RILEM of the SFRC.