• Title/Summary/Keyword: concrete temperature

Search Result 2,482, Processing Time 0.037 seconds

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF

A Study on the Effects of Curing Temperature for Compressive Strength of High Performance Concrete (양생온도 변화가 고성능 콘크리트의 압축강도에 미치는 영향에 관한 연구)

  • Ro, In-Cheul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • The object of this study is to define the characteristics of high performance concrete with varing compressive strength of concrete and curing temperature. The major test variables are 1) high strength concrete(500kg/$cm^2$) and ordinary strength concrete(240kg/$cm^2$) compressive strength, 2) curing temperature and condition, 3) concrete curing age, 4) three types of cement. From the test results were shown that curing temperature and curing conditions were also very effective for high strength concrete and ordinary strength concrete, and concrete were largely effected by cement type and temperature during the hydration reaction process. This paper describes the effect of curing temperature for strength and characteristics of high performance concrete.

An Effect on Early Temperature of Placing Concrete Affecting Compressive Strength of Concrete (콘크리트 타설 초기온도가 압축강도에 미치는 영향)

  • Park, Dae-Oh;Park, Young-Shin;Park, Jae-Myung;Gang, Yeon-Woo;Jun, Byung-Chea
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.641-644
    • /
    • 2008
  • The strength of concrete is developed by cement hydration reaction influenced by the circumferential temperatures. In this study, therefore, the experiments are conducted and evaluated about the characteristics as changes of early concrete placing temperature and curing temperature to understand the effects of the temperature which influences concrete properties. The results of the experiments changing the early concrete placing temperature in 5$^{\circ}C$ and 10$^{\circ}C$ are followed. In case of conducting standard concrete curing, early compressive strength development rate of the concrete which had low placing temperature was low, but it was shown that early compressive strength development rate was not affected by low placing temperature in age 28 days of concrete. In case of conducting outdoor curing in winter, early compressive strength development rate of the concrete which had high placing temperature was high in all test specimens. As a results, early compressive strength development of concrete was influenced by temperature of early concrete, but after aging 28 days of concrete, it was influenced by curing temperature rather than temperature of early concrete.

  • PDF

An experimental Study on the Strength Control of High Fluidity Concrete by Maturity (적산온도방식에 의한 고유동콘크리트의 강도관리에 관한 실험적 연구)

  • 김무한;남재현;김규용;길배수;한장현
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2000
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength with time as a result of the cement hydration and, thus the rate of hydration, as in any chemical reaction, depends primarily on the concrete temperature during hydration. Thus, the strength of concrete is function of its time-temperature history. This goals of the present study are to investigate a relationship between strength of high-fluidity concrete and maturity that is expressed as a function of an integral of the curing period and temperature, predict strength of concrete.

A Temperature Management of Mass Concrete for Crack Control in Machine Foundation (기계기초 매스콘크리트의 균열제어를 위한 온도관리)

  • 허택녕;이제방;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.394-401
    • /
    • 1996
  • This paper persents the crack control of mass concrete in massive machine foundation. The dimension of the machine foundation is 52.6m$\times$14.4m$\times$8.5m. The one distinctive characteristic of mass concrete is thermal behavior. Since the cement-water reaction is exothermic by nature, the temperature rises inside the massive concrete structure. When the heat is not quickly dissipated, it can be quite high. Significant tensile stresses may develop from the volume change associated with the increase of decrease of temperature within the mass concrete structure. To avoid occurrence of harmful cracks due to hydration heat, special attention shall be given to the construction of mass cnocrete structures. The temperature control system of mass concrete is proposed in this paper. This system contains a discussion of materials and concrete mix proportioning, thermal analysis, curing method, temperature control, and measurement of hydration heat. As will be seen throughout the paper, the proposed temperature control system have a great effect on the temperature-related cracks on mass concrete structures.

  • PDF

Thermal stress of concrete structure at high temperature considering inelastic thermal strain change (고온에서의 비선형 변형도를 고려한 콘크리트 구조물에서의 열응력 분포)

  • 강석원;홍성걸;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1145-1150
    • /
    • 2000
  • Concrete behaves as ductile material at high temperature. The existing stress-strain relationship is not valid at high temperature condition. Thus, stress-strain curve of concrete at high temperature is re-established by modifying Saenz's suggestion in this study. A constitutive model of concrete subjected to elevated temperature is also suggested. The model consists of three components; free thermal stain, mechanical strain and thermal creep strain. As the temperature increase, the thermal creep becomes more critical to the failure of concrete. The thermal creep strain of concrete is derived from the modified power-law relation for the steady state creep. The proposed equation for thermal creep employs a Dorn's temperature compensated time theorem

  • PDF

Concrete Strength Estimating at Early Ages by the Equivalent Age

  • Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.81-85
    • /
    • 2002
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management method in korea. There are several methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength gradually as a result of chemical reactions between cement and water; and for a specific concrete mixture, strength at any age and at normal conditions is related to the degree of hydration. The rate of hydration and, therefore, strength development of a given concrete will be a function of its temperature. Thus, strength of concrete depends on its time-temperature history. The goals of the present study are to investigate a relationship between strength of high-strength concrete and maturity that is expressed as a function of an integral of the curing period and temperature and predict strength of concrete.

  • PDF

Numerical analysis of spalling of concrete cover at high temperature

  • Ozbolt, Josko;Periskic, Goran;Reinhardt, Hans-Wolf;Eligehausen, Rolf
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.279-293
    • /
    • 2008
  • In the present paper a 3D thermo-hygro-mechanical model for concrete is used to study explosive spalling of concrete cover at high temperature. For a given boundary conditions the distribution of moisture, pore pressure, temperature, stresses and strains are calculated by employing a three-dimensional transient finite element analysis. The used thermo-hygro-mechanical model accounts for the interaction between hygral and thermal properties of concrete. Moreover, these properties are coupled with the mechanical properties of concrete, i.e., it is assumed that the mechanical properties (damage) have an effect on distribution of moisture (pore pressure) and temperature. Stresses in concrete are calculated by employing temperature dependent microplane model. To study explosive spalling of concrete cover, a 3D finite element analysis of a concrete slab, which was locally exposed to high temperature, is performed. It is shown that relatively high pore pressure in concrete can cause explosive spalling. The numerical results indicate that the governing parameter that controls spalling is permeability of concrete. It is also shown that possible buckling of a concrete layer in the spalling zone increases the risk for explosive spalling.

A Thermal Conductivity Model for Hydrating Concrete Pavements

  • Jeong Jin-Hoon;Kim Nakseok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.125-129
    • /
    • 2004
  • Hydrating concrete pavement is typically subjected to temperature-induced stresses that drive cracking mechanisms at early concrete ages. Undesired cracking plays a key role in the long-term performance of concrete pavement systems. The loss of support beneath the concrete pavement due to curling caused by temperature changes in the pavement may induce several significant distresses such as punch out pumping, and erosion. The effect of temperature on these distress mechanisms is both significant and intricate. Because thermal conductivity dominates temperature flow in hydrating concrete over time, this material property is back-calculated by transforming governing equation of heat transfer and test data measured in laboratory. Theoretically, the back- calculated thermal conductivity simulates the heat movements in concrete very accurately. Therefore, the back- calculated thermal conductivity can be used to calibrate concrete temperature predicted by models.

Prediction of Adiabatic Temperature in Concrete as Semiadiabatic Temperature (간이단열온도로서 콘크리트의 단열온도 추정을 위한 연구)

  • Moon, Han-Young;Moon, Dae-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.121-129
    • /
    • 2001
  • The semi-adiabatic temperature rise and the losses of temperature of cement paste, mortar and concrete were measured by an apparatus of semi-adiabatic temperature. Heat of hydration was measured by a conduction calorimeter and adiabatic temperature rise of concrete was measured by an adiabatic calorimeter. The derived equation which can assume the adiabatic temperature was proposed by measuring the semi-adiabatic temperature of concrete. The maximum adiabatic temperature rise of concrete obtained by the derived equation of adiabatic temperature, $T_{ad}(t)=T_{sad}(t)+T_{dis}(t)$, showed $55^{\circ}C$ approximately and it had good relation with the other one obtained by the heat of hydration of cement paste and with maximum value which was measured by the adiabatic calorimeter. The adiabatic temperature rise obtained by derived equation was a different information in comparison with the value obtained by adiabatic temperature rise equations by Hell and et. al. in early age, but it showed similar tendencies with the other one according to elapsed time. Adiabatic temperature rise of lich mix concrete with highly cement content was predicted. The adiabatic temperature rise of cement paste and mortar obtained by derived equation from us showed comparatively matching results to compared with that of obtained by adiabatic temperature equation from concrete standard specification.

  • PDF